RUS  ENG
Full version
PEOPLE

Knizhnerman Leonid Aronovich

Publications in Math-Net.Ru

  1. Adaptive residual-time restarting for Krylov subspace matrix exponential evaluations

    Keldysh Institute preprints, 2019, 127, 28 pp.
  2. Padé–Faber Approximation of Markov Functions on Real-Symmetric Compact Sets

    Mat. Zametki, 86:1 (2009),  81–94
  3. Gauss–Arnoldi quadrature for $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ and rational Padé-type approximation for Markov-type functions

    Mat. Sb., 199:2 (2008),  27–48
  4. On solving indefinite symmetric linear systems by means of the Lanczos method

    Zh. Vychisl. Mat. Mat. Fiz., 39:3 (1999),  371–377
  5. The simple Lanczos procedure: Estimates of the error of the Gauss quadrature formula and their applications

    Zh. Vychisl. Mat. Mat. Fiz., 36:11 (1996),  5–19
  6. The quality of approximations to a well-isolated eigenvalue, and the arrangement of “Ritz numbers” in a simple Lanczos process

    Zh. Vychisl. Mat. Mat. Fiz., 35:10 (1995),  1459–1475
  7. Error bounds in Arnoldi's method: The case of a normal matrix

    Zh. Vychisl. Mat. Mat. Fiz., 32:9 (1992),  1347–1360
  8. Error bounds in the simple Lanczos procedure for computing functions of symmetric matrices and eigenvalues

    Zh. Vychisl. Mat. Mat. Fiz., 31:7 (1991),  970–983
  9. Calculation of functions of unsymmetric matrices using Arnoldi's method

    Zh. Vychisl. Mat. Mat. Fiz., 31:1 (1991),  5–16
  10. Two polynomial methods of calculating functions of symmetric matrices

    Zh. Vychisl. Mat. Mat. Fiz., 29:12 (1989),  1763–1775
  11. Some estimates of rational trigonometric sums and sums of Legendre symbols

    Uspekhi Mat. Nauk, 34:3(207) (1979),  199–200


© Steklov Math. Inst. of RAS, 2024