RUS  ENG
Full version
PEOPLE

Voblyi Vitalii Antonievich

Publications in Math-Net.Ru

  1. An approach to obtaining identities with binomial coefficients and orthogonal polynomials

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 235 (2024),  34–39
  2. On asymptotics of solution of nonlinear difference equation of convolution type

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 234 (2024),  21–26
  3. Enumeration of labeled bi-block graphs

    Diskretn. Anal. Issled. Oper., 30:4 (2023),  24–34
  4. New identities from enumeration of graphs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 229 (2023),  33–36
  5. On enumeration of labeled connected bridgeless graphs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 223 (2023),  138–147
  6. On Some Identities with Binomial Coefficients

    Mat. Zametki, 113:3 (2023),  461–465
  7. An asymptotics for the number of labelled planar tetracyclic and pentacyclic graphs

    Prikl. Diskr. Mat., 2023, no. 59,  72–79
  8. On asymptotical enumeration of labeled series-parallel $k$-cyclic graphs

    Diskretn. Anal. Issled. Oper., 29:4 (2022),  5–14
  9. Asymptotical enumeration of some abeled geodetic graphs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215 (2022),  58–67
  10. Enumeration of labeled thorn graphs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 210 (2022),  49–54
  11. Two combinatorial identities related to enumeration of graphs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 208 (2022),  11–14
  12. Asymptotic enumeration of labeled series-parallel $k$-cyclic bridgeless graphs

    Diskretn. Anal. Issled. Oper., 28:4 (2021),  61–69
  13. On the enumeration of labeled series-parallel $k$-cyclic $2$-connected graphs

    Diskretn. Anal. Issled. Oper., 28:1 (2021),  5–14
  14. Enumeration of labeled nonplanar pentacyclic blocks

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 193 (2021),  28–32
  15. Refinement of the Asymptotics of the Number of Labeled Series-Parallel Graphs

    Mat. Zametki, 109:6 (2021),  944–947
  16. On the number of labeled outerplanar $k$-cyclic bridgeless graphs

    Diskretn. Anal. Issled. Oper., 27:1 (2020),  5–16
  17. On an approach to enumeration of labeled connected graphs: A review

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 188 (2020),  106–118
  18. Asymptotical enumeration of labeled series-parallel tetracyclic graphs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 187 (2020),  31–35
  19. A new formula for the number of labeled series-parallel graphs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020),  10–13
  20. Enumeration of labeled series-parallel tricyclic graphs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 177 (2020),  132–136
  21. An Explicit Formula for the Number of Labeled Series-Parallel $k$-Cyclic Blocks

    Mat. Zametki, 108:4 (2020),  622–624
  22. On the Asymptotic Enumeration of Labeled Connected $k$-Cyclic Graphs without Bridges

    Mat. Zametki, 107:2 (2020),  304–306
  23. Enumeration of labeled Eulerian pentacyclic graphs

    Prikl. Diskr. Mat., 2020, no. 50,  87–92
  24. The number of labeled tetracyclic series-parallel blocks

    Prikl. Diskr. Mat., 2020, no. 47,  57–61
  25. The second Riddel relation and its consequences

    Diskretn. Anal. Issled. Oper., 26:1 (2019),  20–32
  26. The Number of Labeled Outerplanar $k$-Cyclic Graphs

    Mat. Zametki, 103:5 (2018),  657–666
  27. Enumeration of labeled outerplanar bicyclic and tricyclic graphs

    Diskretn. Anal. Issled. Oper., 24:2 (2017),  18–31
  28. Enumeration of Labeled Geodetic Graphs with Small Cyclomatic Number

    Mat. Zametki, 101:5 (2017),  684–689
  29. On the number of spanning trees in labeled cactus

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  139–140
  30. Enumeration of labeled connected graphs with given order and number of edges

    Diskretn. Anal. Issled. Oper., 23:2 (2016),  5–20
  31. On the number of labeled outerplanar $k$-cycle blocks

    Diskr. Mat., 28:3 (2016),  26–27
  32. Enumeration of labelled flower wheel graphs

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  109–110
  33. On the asymptotics of the number of repetition-free Boolean functions in the basis $\{\&,\lor,\oplus,\lnot\}$

    Diskr. Mat., 27:3 (2015),  158–159
  34. Enumeration of Labeled Geodetic Planar Graphs

    Mat. Zametki, 97:3 (2015),  336–341
  35. Enumeration of labeled Eulerian tetracyclic graphs

    Diskretn. Anal. Issled. Oper., 21:5 (2014),  17–22
  36. The number of labeled block-cactus graphs

    Diskretn. Anal. Issled. Oper., 21:2 (2014),  24–32
  37. A formula for the number of labeled connected graphs

    Diskretn. Anal. Issled. Oper., 19:4 (2012),  48–59
  38. Enumeration of Labeled Bicyclic and Tricyclic Eulerian Graphs

    Mat. Zametki, 92:5 (2012),  678–683
  39. Enumeration of Labeled Connected Bicyclic and Tricyclic Graphs without Bridges

    Mat. Zametki, 91:2 (2012),  308–311
  40. The asymptotics of the number of repetition-free Boolean functions in the basis $B_1$

    Diskr. Mat., 22:4 (2010),  156–157
  41. A simple upper bound for the number of spanning trees of regular graphs

    Diskr. Mat., 20:3 (2008),  47–50
  42. On enumeration of labelled connected graphs by the number of cutpoints

    Diskr. Mat., 20:1 (2008),  52–63
  43. Simplification of Formulas for the Number of Maps on Surfaces

    Mat. Zametki, 83:1 (2008),  14–23
  44. Some necessary conditions for a polynomial to be chromatic

    Diskr. Mat., 13:1 (2001),  73–77
  45. The shrinking-and-expanding method for the graph enumeration

    Diskr. Mat., 10:4 (1998),  82–87
  46. Enumeration of labeled, connected, homeomorphically irreducible graphs

    Mat. Zametki, 49:3 (1991),  12–22
  47. Wright and Stepanov–Wright coefficients

    Mat. Zametki, 42:6 (1987),  854–862
  48. Asymptotic formulas for the enumerator of trees with a given number of hanging or internal vertices

    Mat. Zametki, 21:1 (1977),  65–70
  49. A condition for the asymptotic stability of a linear homogeneous system whose principal part is a Jordan matrix

    Mat. Zametki, 8:6 (1970),  761–772

  50. Concise English-Russian dictionary on graph theory

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 233 (2024),  127–153
  51. Letter to the Editor

    Diskretn. Anal. Issled. Oper., 21:5 (2014),  95


© Steklov Math. Inst. of RAS, 2025