|
|
Publications in Math-Net.Ru
-
Riesz Potential with Integrable Density in Hölder-Variable Spaces
Mat. Zametki, 108:5 (2020), 669–678
-
Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable Hölder spaces
Sib. Èlektron. Mat. Izv., 14 (2017), 647–656
-
Zygmund-type estimates for fractional integration and differentiation operators of variable order
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 6, 25–34
-
Fractional integrals and differentials of variable order in Hölder spaces $H^{\omega(t,x)}$
Vladikavkaz. Mat. Zh., 12:4 (2010), 3–11
-
Spherical convolution operators in spaces of variable Hölder order
Mat. Zametki, 80:5 (2006), 683–695
-
Spherical operators of potential type in weighted Hölder spaces of variable order
Vladikavkaz. Mat. Zh., 7:2 (2005), 26–40
-
Spherical convolution operators with a power-logarithmic kernel in generalized Hölder spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 2, 3–14
-
Equivalent normings in spaces of functions of fractional smoothness on the sphere, of type $C^\lambda(S_{n-1})$, $H^\lambda(S_{n-1})$
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 12, 68–71
-
An operator of potential type on a sphere in generalized Hölder classes
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 11, 66–69
-
Salaudin Musaevich Umarkhadzhiev (on the occasion of his 70th birthday)
Vladikavkaz. Mat. Zh., 25:1 (2023), 141–142
-
Stefan Grigorievich Samko (on the occasion of his 80th birthday)
Vladikavkaz. Mat. Zh., 23:3 (2021), 126–129
-
Stefan Grigog'evich Samko (on his seventieth birthday)
Vladikavkaz. Mat. Zh., 13:2 (2011), 67–68
-
Sergeĭ Mikhaĭlovich Nikol'skiĭ (on the occasion of his hundredth birthday)
Vladikavkaz. Mat. Zh., 7:2 (2005), 5–10
© , 2024