|
|
Publications in Math-Net.Ru
-
Billiards in confocal quadrics as a pluri-Lagrangian system
Theor. Appl. Mech., 43:2 (2016), 221–228
-
On Integrability of Hirota–Kimura Type Discretizations
Regul. Chaotic Dyn., 16:3-4 (2011), 245–289
-
On Quadrirational Yang–Baxter Maps
SIGMA, 6 (2010), 033, 9 pp.
-
Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases
Funktsional. Anal. i Prilozhen., 43:1 (2009), 3–21
-
On organizing principles of discrete differential geometry. Geometry of spheres
Uspekhi Mat. Nauk, 62:1(373) (2007), 3–50
-
Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results
Algebra i Analiz, 17:1 (2005), 53–83
-
Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$
Zh. Vychisl. Mat. Mat. Fiz., 31:1 (1991), 52–63
-
Generalized Toda chains in discrete time
Algebra i Analiz, 2:2 (1990), 141–157
-
Hamiltonian methods of Runge–Kutta type and their variational interpretation
Matem. Mod., 2:4 (1990), 78–87
-
Irreducibility of the Schrödinger equation with quasiperiodic potential
Differ. Uravn., 25:11 (1989), 1932–1941
-
Integrable mappings of the standard type
Funktsional. Anal. i Prilozhen., 23:1 (1989), 84–85
-
The canonicity of mappings generated by Runge–Kutta type methods when integrating the systems $\ddot x=-\partial U/\partial x$
Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989), 202–211
-
Symbolic dynamics for a nonlinear nonautonomous oscillator
Differ. Uravn., 23:3 (1987), 535–538
-
Some properties of methods for the numerical integration of systems of the form $\ddot x=f(x)$
Zh. Vychisl. Mat. Mat. Fiz., 27:10 (1987), 1504–1515
© , 2024