RUS  ENG
Full version
PEOPLE

Suris Yury Borisovich

Publications in Math-Net.Ru

  1. Billiards in confocal quadrics as a pluri-Lagrangian system

    Theor. Appl. Mech., 43:2 (2016),  221–228
  2. On Integrability of Hirota–Kimura Type Discretizations

    Regul. Chaotic Dyn., 16:3-4 (2011),  245–289
  3. On Quadrirational Yang–Baxter Maps

    SIGMA, 6 (2010), 033, 9 pp.
  4. Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases

    Funktsional. Anal. i Prilozhen., 43:1 (2009),  3–21
  5. On organizing principles of discrete differential geometry. Geometry of spheres

    Uspekhi Mat. Nauk, 62:1(373) (2007),  3–50
  6. Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results

    Algebra i Analiz, 17:1 (2005),  53–83
  7. Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$

    Zh. Vychisl. Mat. Mat. Fiz., 31:1 (1991),  52–63
  8. Generalized Toda chains in discrete time

    Algebra i Analiz, 2:2 (1990),  141–157
  9. Hamiltonian methods of Runge–Kutta type and their variational interpretation

    Matem. Mod., 2:4 (1990),  78–87
  10. Irreducibility of the Schrödinger equation with quasiperiodic potential

    Differ. Uravn., 25:11 (1989),  1932–1941
  11. Integrable mappings of the standard type

    Funktsional. Anal. i Prilozhen., 23:1 (1989),  84–85
  12. The canonicity of mappings generated by Runge–Kutta type methods when integrating the systems $\ddot x=-\partial U/\partial x$

    Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989),  202–211
  13. Symbolic dynamics for a nonlinear nonautonomous oscillator

    Differ. Uravn., 23:3 (1987),  535–538
  14. Some properties of methods for the numerical integration of systems of the form $\ddot x=f(x)$

    Zh. Vychisl. Mat. Mat. Fiz., 27:10 (1987),  1504–1515


© Steklov Math. Inst. of RAS, 2024