RUS  ENG
Full version
PEOPLE

Zheludev Valery Aleksandrovich

Publications in Math-Net.Ru

  1. The Butterworth wavelet transform and its implementation with the use of recursive filters

    Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002),  597–608
  2. Biorthogonal wavelet schemes based on discrete spline interpolation

    Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001),  537–548
  3. Wavelets based on periodic splines

    Dokl. Akad. Nauk, 335:1 (1994),  9–13
  4. Spline-operational calculus and numerical solution of integral convolution equations of the first kind

    Differ. Uravn., 28:2 (1992),  316–329
  5. Periodic splines and the fast Fourier transform

    Zh. Vychisl. Mat. Mat. Fiz., 32:2 (1992),  179–198
  6. Local smoothing splines with a regularizing parameter

    Zh. Vychisl. Mat. Mat. Fiz., 31:2 (1991),  193–211
  7. An operational calculus that is connected with periodic splines

    Dokl. Akad. Nauk SSSR, 313:6 (1990),  1309–1315
  8. Representation of the approximational error term and sharp estimates for some local splines

    Mat. Zametki, 48:3 (1990),  54–65
  9. Approximation remainder terms for local splines of second and fourth degree

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 6,  37–46
  10. Local spline-approximation on arbitrary grids

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 8,  14–18
  11. Local spline approximation on a uniform mesh

    Zh. Vychisl. Mat. Mat. Fiz., 27:9 (1987),  1296–1310
  12. Reconstruction by local splines of functions and their derivatives from mesh data with an error

    Zh. Vychisl. Mat. Mat. Fiz., 27:1 (1987),  22–34
  13. Local quasi-interpolation splines and Fourier transforms

    Dokl. Akad. Nauk SSSR, 282:6 (1985),  1293–1298
  14. Asymptotic formulas for local spline approximation on a uniform mesh

    Dokl. Akad. Nauk SSSR, 269:4 (1983),  797–802
  15. Derivatives of fractional order and the numerical solution of a class of convolution equations

    Differ. Uravn., 18:11 (1982),  1950–1960
  16. A stable solution of a class of convolution equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 3,  35–45
  17. The approximate solution of a class of equations in convolutions by means of splines

    Zh. Vychisl. Mat. Mat. Fiz., 15:3 (1975),  573–591
  18. The well-posedness of a certain class of convolution equations

    Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974),  610–630

  19. Correction: “Local spline approximation on a uniform grid”

    Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988),  476


© Steklov Math. Inst. of RAS, 2025