|
|
Publications in Math-Net.Ru
-
The Butterworth wavelet transform and its implementation with the use of recursive filters
Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002), 597–608
-
Biorthogonal wavelet schemes based on discrete spline interpolation
Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001), 537–548
-
Wavelets based on periodic splines
Dokl. Akad. Nauk, 335:1 (1994), 9–13
-
Spline-operational calculus and numerical solution of integral convolution equations of the first kind
Differ. Uravn., 28:2 (1992), 316–329
-
Periodic splines and the fast Fourier transform
Zh. Vychisl. Mat. Mat. Fiz., 32:2 (1992), 179–198
-
Local smoothing splines with a regularizing parameter
Zh. Vychisl. Mat. Mat. Fiz., 31:2 (1991), 193–211
-
An operational calculus that is connected with periodic splines
Dokl. Akad. Nauk SSSR, 313:6 (1990), 1309–1315
-
Representation of the approximational error term and sharp estimates for some local splines
Mat. Zametki, 48:3 (1990), 54–65
-
Approximation remainder terms for local splines of second and fourth degree
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 6, 37–46
-
Local spline-approximation on arbitrary grids
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 8, 14–18
-
Local spline approximation on a uniform mesh
Zh. Vychisl. Mat. Mat. Fiz., 27:9 (1987), 1296–1310
-
Reconstruction by local splines of functions and their derivatives from mesh data with an error
Zh. Vychisl. Mat. Mat. Fiz., 27:1 (1987), 22–34
-
Local quasi-interpolation splines and Fourier transforms
Dokl. Akad. Nauk SSSR, 282:6 (1985), 1293–1298
-
Asymptotic formulas for local spline approximation on a uniform mesh
Dokl. Akad. Nauk SSSR, 269:4 (1983), 797–802
-
Derivatives of fractional order and the numerical solution of a class of convolution equations
Differ. Uravn., 18:11 (1982), 1950–1960
-
A stable solution of a class of convolution equations
Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 3, 35–45
-
The approximate solution of a class of equations in convolutions by means of splines
Zh. Vychisl. Mat. Mat. Fiz., 15:3 (1975), 573–591
-
The well-posedness of a certain class of convolution equations
Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974), 610–630
-
Correction: “Local spline approximation on a uniform grid”
Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988), 476
© , 2025