|
|
Publications in Math-Net.Ru
-
On codes with unique decoding to the nearest
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 138–140
-
Independence of events in spaces of equally probable ciphervalues
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 102–106
-
The criterion of minimum perfect ciphers with respect to inclusion
Prikl. Diskr. Mat. Suppl., 2022, no. 15, 51–54
-
To the task of description minimal by inclusion perfect ciphers
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 91–95
-
Constructions of non-endomorphic perfect ciphers
Prikl. Diskr. Mat. Suppl., 2020, no. 13, 51–54
-
On homogeneous matroids corresponding to block-schemes
Prikl. Diskr. Mat. Suppl., 2020, no. 13, 8–12
-
Refractive bijections in Steiner triples
Prikl. Diskr. Mat. Suppl., 2020, no. 13, 6–8
-
Geometric model of perfect ciphers with three cipher plaintext values
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 113–116
-
Homogeneous matroids and block-schemes
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 111–113
-
On the blocking of two-dimensional affine varieties
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 7–10
-
On explicit constructions for solving the problem “A secret sharing”
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 68–70
-
On homogeneous matroids and block-schemes
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 21–23
-
On reducing the order of linear recurrence equations with constant coefficients
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 12–13
-
Analogues of the Shannon theorem for non-minimal endomorphic perfect ciphers
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 62–65
-
Description of non-endomorphic maximum perfect ciphers with two-valued plaintext alphabet
Prikl. Diskr. Mat., 2015, no. 4(30), 43–55
-
Non-endomorphic perfect ciphers with two elements in plaintext alphabet
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 63–66
-
The equivalent problem of testing Fermat primes
Prikl. Diskr. Mat. Suppl., 2014, no. 7, 13–14
-
On non-minimal perfect ciphers
Prikl. Diskr. Mat. Suppl., 2013, no. 6, 42–44
-
Constructions of ideal secret sharing schemes
Prikl. Diskr. Mat. Suppl., 2013, no. 6, 41–42
-
On polyquadratic extension of binary fields
Prikl. Diskr. Mat. Suppl., 2013, no. 6, 12–13
-
Problems of almost threshold secret sharing schemes
Prikl. Diskr. Mat. Suppl., 2012, no. 5, 53–54
-
On the solution of quadratic equations in binary fields
Prikl. Diskr. Mat. Suppl., 2012, no. 5, 6–7
-
On the topology of elliptic curves
Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012), 242–250
-
Forward sonic line in the inverse theory of nozzle
Trudy Inst. Mat. i Mekh. UrO RAN, 14:1 (2008), 81–97
-
Комбинаторные проблемы существования совершенных шифров
Trudy Inst. Mat. i Mekh. UrO RAN, 13:4 (2007), 61–73
-
Extension of Ovsyannikov's analytical solutions to transonic flows
Prikl. Mekh. Tekh. Fiz., 46:6 (2005), 14–25
-
Analytic construction of the near field in a transonic flow near a thin axisymmetric body
Sib. Zh. Ind. Mat., 8:3 (2005), 93–101
-
Nonlocal solutions of the Cauchy problem in scales of analytic polyalgebras
Trudy Inst. Mat. i Mekh. UrO RAN, 9:2 (2003), 105–128
-
Solution of nonlinear equations in analytic polyalgebras. II
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 6, 45–52
-
Solution of nonlinear equations in analytic polyalgebras. I
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 1, 66–76
-
An analogue of Kovalevskaya's theorem for linear evolution equations
Sibirsk. Mat. Zh., 40:6 (1999), 1377–1379
-
On the propagation of a nonlinear-diffusion front
Prikl. Mekh. Tekh. Fiz., 37:4 (1996), 113–118
-
On the Cauchy problem in Banach scales with compact embeddings
Sibirsk. Mat. Zh., 37:5 (1996), 1167–1175
-
Analyticity of linear one-parameter Lie–Bäcklund groups
Differ. Uravn., 26:4 (1990), 699–702
-
An analogue of the Kovalevskaya theorem for linear evolution equations with constant coefficients
Mat. Zametki, 48:5 (1990), 156–157
-
On analytic solutions of the Korteweg–de Vries equation represented by exponential series
Differ. Uravn., 25:2 (1989), 343
-
Expansion of the solutions of nonlinear equations into double series
Differ. Uravn., 14:10 (1978), 1844–1850
-
Representation of solutions of linear partial differential equations in the form of finite sums
Mat. Zametki, 20:3 (1976), 359–363
-
Bases over the field $\mathrm{GF(2)}$ generated by the Schur — Hadamard operation
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 154–158
-
Anatolii Fedorovich Sidorov (1933–1999)
Trudy Inst. Mat. i Mekh. UrO RAN, 9:2 (2003), 3–9
© , 2024