RUS  ENG
Full version
PEOPLE

Kuleshov Alexander Sergeevich

Publications in Math-Net.Ru

  1. Stability of regular precessions of a body with a fixed point bounded by the ellipsoid of revolution in a flow of particles

    Avtomat. i Telemekh., 2024, no. 9,  59–76
  2. The transgression effect in the problem of a ball rolling in a hole

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11:3 (2024),  549–556
  3. Integrability by quadratures of the problem of rolling motion of a heavy homogeneous ball on a surface of revolution of the second order

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11:2 (2024),  347–353
  4. Necessary conditions for existence of an additional integral in the problem on motion of a solid body with a fixed point in the flow of particles bounded by an ellipsoid revolution surface

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 2,  40–46
  5. Transgression effect in the problem of motion of a rod on a cylinder

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10:3 (2023),  568–580
  6. Nonintegrability of the Problem of the Motion of an Ellipsoidal Body with a Fixed Point in a Flow of Particles

    Rus. J. Nonlin. Dyn., 18:4 (2022),  629–637
  7. On the motion of a rigid body with a fixed point in a flow of particles

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 3,  58–68
  8. The problem of motion of a rigid body with a fixed point in a flow of particles

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:3 (2022),  550–560
  9. Analytical research of the hopf bifurcation in the problem of motion of the rattleback

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:2 (2022),  305–316
  10. Application of the Kovacic algorithm to the study of the motion of a heavy rigid body with a fixed point in the Hess case

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 202 (2021),  10–42
  11. Liouvillian solutions in the problem of rolling of a heavy homogeneous ball on a surface of revolution

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8:4 (2021),  653–660
  12. The transgression effect in the problem of motion of an almost holonomic pendulum

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:2 (2020),  356–361
  13. Geometric Constraints in the Problem of Motion of a Two-Wheeled Ripstik Skateboard

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 148 (2018),  20–24
  14. Investigation of the Motion of a Heavy Body of Revolution on a Perfectly Rough Plane by the Kovacic Algorithm

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 145 (2018),  3–85
  15. The Routh theorem for mechanical systems with unknown first integrals

    Theor. Appl. Mech., 44:2 (2017),  169–180
  16. Horizontal motion of a body consisting of two symmetric plates

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 2,  36–41
  17. On the Motion of Chaplygin’s Sledge over Convex Surface

    Avtomat. i Telemekh., 2013, no. 8,  80–90
  18. Motion of the oloid on the horizontal plane

    Nelin. Dinam., 7:4 (2011),  825–835
  19. A rigid cylinder on a viscoelastic plane

    Nelin. Dinam., 7:3 (2011),  601–625
  20. Nonlinear dynamics of a skateboard model with three degrees of freedom

    Nelin. Dinam., 4:3 (2008),  341–356
  21. Nonlinear dynamics of a simplified skateboard model

    Nelin. Dinam., 4:3 (2008),  323–340
  22. Further Development of the Mathematical Model of a Snakeboard

    Regul. Chaotic Dyn., 12:3 (2007),  321–334
  23. Mathematical model of the snakeboard

    Mat. Model., 18:5 (2006),  37–48
  24. On the first integrals of equations of motion of a symmetric gyrostat on a perfectly rough plane

    Keldysh Institute preprints, 2003, 047, 24 pp.
  25. On invariant manifolds of linear integrals of mechanic systems

    Keldysh Institute preprints, 2003, 015, 20 pp.
  26. On the first integrals of equation of motion of a heavy rotational symmetric body on a perfectly rough plane

    Keldysh Institute preprints, 2002, 068
  27. On the Generalized Chaplygin Integral

    Regul. Chaotic Dyn., 6:2 (2001),  227–232
  28. On the Jellett–Chaplygin integral

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 2,  54–56

  29. Steady Motions of Nonholonomic Systems

    Regul. Chaotic Dyn., 7:1 (2002),  81–117


© Steklov Math. Inst. of RAS, 2025