RUS  ENG
Full version
PEOPLE

Krukier Lev Abramovich

Publications in Math-Net.Ru

  1. Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants

    Mat. Model., 28:8 (2016),  82–96
  2. Preconditioning of GMRES by the skew-Hermitian iterations

    Sib. Zh. Vychisl. Mat., 19:3 (2016),  267–279
  3. The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient

    Sib. Zh. Vychisl. Mat., 19:1 (2016),  75–85
  4. An effective iterative method for saddle point problems

    Mat. Model., 26:12 (2014),  116–126
  5. Modeling of extreme floods in the delta of Don river on the multiprocessor computer systems

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 3:1 (2014),  80–88
  6. Using the incomplete ILU decomposition for convection-diffusion processes modeling in anisotropic media

    Mat. Model., 24:9 (2012),  125–136
  7. Convergence of skew-symmetric iterative methods

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 6,  75–79
  8. Improving the efficiency of variational methods for solving strongly nonsymmetric linear algebraic equation system received in convection-diffusion problems

    Mat. Model., 22:10 (2010),  56–68
  9. Modeling radioactive pollution of atmosphere in region of the Volgodonsk atomic power station

    Mat. Model., 20:7 (2008),  85–92
  10. The solution of convection-diffusion stationary problem with dominant convection by multigrid method with special smoothers

    Mat. Model., 18:5 (2006),  63–72
  11. Two-step iterative methods for solving the stationary convection-diffusion equation with a small parameter at the highest derivative on a uniform grid

    Zh. Vychisl. Mat. Mat. Fiz., 46:2 (2006),  295–306
  12. Effective difference schemes for dynamic convection-diffusion equation with dominate convection

    Mat. Model., 17:12 (2005),  80–86
  13. On a class of triangular skew-symmetric schemes for solving the nonstationary convection-diffusion equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 5,  41–46
  14. Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation

    Mat. Model., 16:4 (2004),  23–32
  15. Pollution spreading in liquid crystals in the electric field

    Mat. Model., 16:1 (2004),  3–11
  16. Comparison of gravitational regime models for ground water flow

    Mat. Model., 14:2 (2002),  51–60
  17. A two-cycle triangular skew-symmetric iterative method for solving strongly asymmetric systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 5,  36–42
  18. The use of fdm for the solution of the Shallow-Water equations

    Mat. Model., 13:3 (2001),  57–60
  19. Using the skew-symmetric part of the coefficient matrix to find an iterative solution of the strongly nonsymmetric positive real linear system of equations

    Mat. Model., 13:3 (2001),  49–56
  20. Skew-symmetric iterative methods for solving stationary convection-diffusion problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 11,  62–75
  21. Influence of the form of convection-diffusion equation on the convergence of the successive over-relaxation method

    Zh. Vychisl. Mat. Mat. Fiz., 39:11 (1999),  1821–1827
  22. Skew-symmetric iteration methods for solving stationary problem of convection-diffusion with a small parameter at the highest derivative

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 4,  77–85
  23. Mathematical modelling of the transport processes in the incompressible medium with predominating convection

    Mat. Model., 9:2 (1997),  4–12
  24. Alternatively triangular screw-symmetric method for solving linear systems with non-symmetric definite matrix

    Mat. Model., 9:1 (1997),  55–68
  25. Iterative solution of strongly nonsymmetric systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 37:11 (1997),  1283–1293
  26. Mathematical modelling of Azov sea gydrodynamics for projects of damb building

    Mat. Model., 3:9 (1991),  3–20
  27. Some ways of constructing an operator $B$ in implicit two-layer iteration schemes that ensures their convergence when the operator $A$ is dissipative

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 5,  41–47
  28. On a sufficient condition for the convergence of iteration methods with a nonselfadjoint initial operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 9,  75–76
  29. Implicit difference schemes and an iteration method for their solution for a class of systems of quasilinear equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 7,  41–52


© Steklov Math. Inst. of RAS, 2025