RUS  ENG
Full version
PEOPLE

Kuznetsov Vladimir Vasil'evich

Publications in Math-Net.Ru

  1. Dependence of heat exchange in an evaporating liquid film in a microchannel on heater size

    Prikl. Mekh. Tekh. Fiz., 65:5 (2024),  103–111
  2. Influence of location of submerged impact microjets on convective heat transfer during cooling of a heat-stressed surface by water and dielectric liquid

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:2 (2023),  30–33
  3. Specifics of boiling and condensation in upward flow in minichannel systems

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:23 (2015),  24–31
  4. Heat and mass transfer in the initial microchannel section with chemical conversions of methane in water vapor

    Prikl. Mekh. Tekh. Fiz., 53:1 (2012),  88–97
  5. Thermocapillary motion of two viscous liquids in a cylindrical pipe

    J. Sib. Fed. Univ. Math. Phys., 3:4 (2010),  461–474
  6. Heat and mass transfer at the liquid-gas interface under diffusion evaporation

    J. Sib. Fed. Univ. Math. Phys., 3:2 (2010),  216–227
  7. Interaction of Falling Film Disturbances Caused by Several Local Heaters

    J. Sib. Fed. Univ. Math. Phys., 2:1 (2009),  91–104
  8. О движении ривулета в миниканале с наклоном под действием газового потока при разной интенсивности силы тяжести

    Sib. Zh. Ind. Mat., 12:2 (2009),  3–16
  9. On the influence of the geometric shape of a heater on the dynamics of a flowing fluid film

    Sib. Zh. Ind. Mat., 10:3 (2007),  71–83
  10. On the Existence of a Prandtl Boundary Layer Near a Corner

    Differ. Uravn., 38:6 (2002),  787–794
  11. Downward flow of a nonisothermal thin liquid film with variable viscosity

    Prikl. Mekh. Tekh. Fiz., 43:6 (2002),  134–141
  12. The continuation problem for the Prandtl boundary layer

    Differ. Uravn., 36:7 (2000),  898–902
  13. Boundary layers in free convection

    Prikl. Mekh. Tekh. Fiz., 41:3 (2000),  92–100
  14. On the problem of the marangoni-to-prandtl boundary layer transition

    Sibirsk. Mat. Zh., 41:4 (2000),  822–838
  15. On the existence of a boundary layer near a three-phase contact point

    Sibirsk. Mat. Zh., 41:3 (2000),  635–647
  16. Flows with boundary layers in unbounded regions

    Prikl. Mekh. Tekh. Fiz., 40:4 (1999),  69–80
  17. On the development of the Marangoni boundary layer from a braking point

    Differ. Uravn., 33:6 (1997),  820–826
  18. The anisotropy of properties of the Earth's inner core

    UFN, 167:9 (1997),  1001–1012
  19. The North magnetic pole location in 1994

    Dokl. Akad. Nauk, 348:3 (1996),  397–399
  20. Application of the theory of analytic functions in the numerical modeling of nonstationary surface waves

    Zh. Vychisl. Mat. Mat. Fiz., 35:9 (1995),  1448–1456
  21. A method for the parametrization of boundary conditions in eigenvalue problems

    Zh. Vychisl. Mat. Mat. Fiz., 35:8 (1995),  1155–1164
  22. On solvability conditions for a boundary value problem for the Prandtl boundary layer

    Sibirsk. Mat. Zh., 35:3 (1994),  624–629
  23. The parametrization of boundary conditions in shooting algorithms for the numerical solution of nonlinear boundary-value problems

    Zh. Vychisl. Mat. Mat. Fiz., 32:1 (1992),  30–39
  24. Shell theory based on invariants

    Prikl. Mekh. Tekh. Fiz., 32:5 (1991),  131–136
  25. Experimental study of viscous instability in a porous medium

    Prikl. Mekh. Tekh. Fiz., 30:4 (1989),  79–84
  26. Development of viscosity instability in a porous medium

    Prikl. Mekh. Tekh. Fiz., 30:2 (1989),  116–120
  27. A method for the numerical simulation of unsteady gravity-capillary waves of finite amplitude

    Zh. Vychisl. Mat. Mat. Fiz., 29:6 (1989),  844–852
  28. Propagation of compression waves in a porous fluid-saturated medium

    Prikl. Mekh. Tekh. Fiz., 29:1 (1988),  120–130
  29. Calculation of flows of melt in an ampule

    Prikl. Mekh. Tekh. Fiz., 25:2 (1984),  105–110
  30. Singular cases of the problem of continuation of the boundary-layer

    Zap. Nauchn. Sem. LOMI, 138 (1984),  86–89
  31. A multidimensional analogue of a formula of A. D. Aleksandrov

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 9,  24–28
  32. One form of the equations of hydrodynamics of an ideal incompressible fluid and the variational principle for nonsteady flow with a free surface

    Prikl. Mekh. Tekh. Fiz., 21:1 (1980),  59–62


© Steklov Math. Inst. of RAS, 2025