|
|
Publications in Math-Net.Ru
-
Multidimensional hyperbolic chaos
Funktsional. Anal. i Prilozhen., 58:4 (2024), 3–19
-
A new approach to mathematical modeling of chemical synapses
Izvestiya VUZ. Applied Nonlinear Dynamics, 32:3 (2024), 376–393
-
Symmetric hyperbolic trap
Mat. Zametki, 116:3 (2024), 372–387
-
A family of piecewise-smooth solutions of a class of spatially distributed equations
CMFD, 69:2 (2023), 263–275
-
Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity
Model. Anal. Inform. Sist., 30:2 (2023), 160–169
-
Динамические системы на бесконечномерном торе: основы гиперболической теории
Tr. Mosk. Mat. Obs., 84:1 (2023), 55–116
-
Topologically Mixing Diffeomorphisms on the Infinite-Dimensional Torus
Mat. Zametki, 113:6 (2023), 929–934
-
Self-oscillatory processes in a discrete $RCL$-line with a tunnel diode
TMF, 215:2 (2023), 207–224
-
Релаксационные автоволны в математических моделях экологии
Tr. Semim. im. I. G. Petrovskogo, 33 (2023), 83–143
-
Hunt for chimeras in fully coupled networks of nonlinear oscillators
Izvestiya VUZ. Applied Nonlinear Dynamics, 30:2 (2022), 152–175
-
Hyperbolicity Criterion for Torus Endomorphisms
Mat. Zametki, 111:1 (2022), 134–139
-
Elements of hyperbolic theory on an infinite-dimensional torus
Uspekhi Mat. Nauk, 77:3(465) (2022), 3–72
-
A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus
Mat. Sb., 213:2 (2022), 50–95
-
Periodic two-cluster synchronization modes in fully coupled
networks of nonlinear oscillators
TMF, 212:2 (2022), 213–233
-
Traveling waves in fully coupled networks of linear oscillators
Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022), 71–89
-
On a mathematical model of the repressilator
Algebra i Analiz, 33:5 (2021), 80–124
-
On some modifications of Arnold's cat map
Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 26–30
-
On a class of Anosov diffeomorphisms on the infinite-dimensional torus
Izv. RAN. Ser. Mat., 85:2 (2021), 3–59
-
Periodic modes of group dominance in fully coupled neural networks
Izvestiya VUZ. Applied Nonlinear Dynamics, 29:5 (2021), 775–798
-
On the Existence and Stability of an Infinite-Dimensional Invariant Torus
Mat. Zametki, 109:4 (2021), 508–528
-
Expansive Endomorphisms on the Infinite-Dimensional Torus
Funktsional. Anal. i Prilozhen., 54:4 (2020), 17–36
-
Features of the algorithmic implementation of difference analogues of the logistic equation with delay
Model. Anal. Inform. Sist., 27:3 (2020), 344–355
-
Family of finite-dimensional maps induced by a logistic equation with a delay
Matem. Mod., 32:3 (2020), 19–46
-
Relaxation autowaves in a bi-local neuron model
Tr. Mosk. Mat. Obs., 81:1 (2020), 41–85
-
Solenoidal attractors of diffeomorphisms of annular sets
Uspekhi Mat. Nauk, 75:2(452) (2020), 3–60
-
On Some Sufficient Hyperbolicity Conditions
Trudy Mat. Inst. Steklova, 308 (2020), 116–134
-
Diffusion chaos and its invariant numerical characteristics
TMF, 203:1 (2020), 10–25
-
Equations with the Fermi-Pasta-Ulam and dislocations nonlinearity
Izvestiya VUZ. Applied Nonlinear Dynamics, 27:4 (2019), 52–70
-
New approach to gene network modeling
Model. Anal. Inform. Sist., 26:3 (2019), 365–404
-
A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations
Mat. Sb., 210:2 (2019), 24–74
-
Autowave processes in diffusion neuron systems
Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019), 1495–1515
-
Disordered oscillations in a neural network of three oscillators with a delayed broadcast connection
Model. Anal. Inform. Sist., 25:5 (2018), 572–583
-
Invariant characteristics of forced oscillations of a beam with longitudinal compression
Model. Anal. Inform. Sist., 25:1 (2018), 54–62
-
An approach to modeling artificial gene networks
TMF, 194:3 (2018), 547–568
-
Quasi-stable structures in circular gene networks
Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018), 682–704
-
Many-circuit canard trajectories and their applications
Izv. RAN. Ser. Mat., 81:4 (2017), 108–157
-
Mathematical model of Nicholson's experiment
Model. Anal. Inform. Sist., 24:3 (2017), 365–386
-
Relaxation oscillations in a system of two pulsed synaptically coupled neurons
Model. Anal. Inform. Sist., 24:1 (2017), 82–93
-
Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model
Mat. Zametki, 101:1 (2017), 58–76
-
Two-frequency self-oscillations in a FitzHugh–Nagumo neural network
Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017), 94–110
-
Two wave interactions in a Fermi–Pasta–Ulam model
Model. Anal. Inform. Sist., 23:5 (2016), 548–558
-
The annulus principle in the existence problem for a hyperbolic strange attractor
Mat. Sb., 207:4 (2016), 15–46
-
Buffering in cyclic gene networks
TMF, 187:3 (2016), 560–579
-
Dynamical properties of the Fisher–Kolmogorov–Petrovskii–Piscounov equation with deviation of the spatial variable
Model. Anal. Inform. Sist., 22:5 (2015), 609–628
-
Self-excited wave processes in chains of unidirectionally coupled impulse neurons
Model. Anal. Inform. Sist., 22:3 (2015), 404–419
-
Fisher–Kolmogorov–Petrovskii–Piscounov equation with delay
Model. Anal. Inform. Sist., 22:2 (2015), 304–321
-
Blue sky catastrophe in systems with non-classical relaxation oscillations
Model. Anal. Inform. Sist., 22:1 (2015), 38–64
-
Self-excited relaxation oscillations in networks of impulse neurons
Uspekhi Mat. Nauk, 70:3(423) (2015), 3–76
-
Blue sky catastrophe as applied to modeling of cardiac rhythms
Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015), 1136–1155
-
The buffer phenomenon in ring-like chains of unidirectionally connected generators
Izv. RAN. Ser. Mat., 78:4 (2014), 73–108
-
On the number of coexisting autowaves in the chain of coupled oscillators
Model. Anal. Inform. Sist., 21:5 (2014), 162–180
-
Non-Classical Relaxation Oscillations in Neurodynamics
Model. Anal. Inform. Sist., 21:2 (2014), 71–89
-
On One Means of Hard Excitation of Oscillations in Nonlinear Flutter Systems
Model. Anal. Inform. Sist., 21:1 (2014), 32–44
-
The theory of nonclassical relaxation oscillations in singularly perturbed delay systems
Mat. Sb., 205:6 (2014), 21–86
-
Autowave processes in continual chains of unidirectionally coupled oscillators
Trudy Mat. Inst. Steklova, 285 (2014), 89–106
-
Buffering effect in continuous chains of unidirectionally coupled generators
TMF, 181:2 (2014), 254–275
-
On a modification of the FitzHugh–Nagumo neuron model
Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014), 430–449
-
Relaxation self-oscillations in Hopfield networks with delay
Izv. RAN. Ser. Mat., 77:2 (2013), 53–96
-
Relaxation Cycles in a Generalized Neuron Model with Two Delays
Model. Anal. Inform. Sist., 20:6 (2013), 179–199
-
The Quasi-Normal Form of a System of Three Unidirectionally Coupled Singularly Perturbed Equations with Two Delays
Model. Anal. Inform. Sist., 20:5 (2013), 158–167
-
Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation
Model. Anal. Inform. Sist., 20:3 (2013), 86–98
-
Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain
Model. Anal. Inform. Sist., 20:3 (2013), 43–57
-
Dimensional Characteristics of Diffusion Chaos
Model. Anal. Inform. Sist., 20:1 (2013), 30–51
-
Modeling the Bursting Effect in Neuron Systems
Mat. Zametki, 93:5 (2013), 684–701
-
Periodic traveling-wave-type solutions in circular chains of unidirectionally coupled equations
TMF, 175:1 (2013), 62–83
-
Oscillations in Arrays of Nonlinear Elements in the Scott Experiment
Model. Anal. Inform. Sist., 19:5 (2012), 56–68
-
Bursting Behavior in the System of Coupled Oscillators with Delay and its Statistical Analysis
Model. Anal. Inform. Sist., 19:3 (2012), 82–96
-
Discrete autowaves in neural systems
Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012), 840–858
-
Quasi-periodic oscillations of a neuron equation with two delays
Model. Anal. Inform. Sist., 18:1 (2011), 86–105
-
Relaxation oscillations and diffusion chaos in the Belousov reaction
Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011), 1400–1418
-
The factor of delay in a system of coupled oscillators FitzHugh–Nagumo
Model. Anal. Inform. Sist., 17:3 (2010), 134–143
-
The account of delay in a connecting element between two oscillators
Model. Anal. Inform. Sist., 17:2 (2010), 133–143
-
Relaxation oscillations of electrically coupled neuron-like systems with delay
Model. Anal. Inform. Sist., 17:2 (2010), 28–47
-
Эффект запаздывания в цепи связи пары осцилляторов типа Фитцхью-Нагумо
Matem. Mod. Kraev. Zadachi, 3 (2010), 75–78
-
Уравнение "реакция – диффузия" и его конечномерные аналоги
Matem. Mod. Kraev. Zadachi, 3 (2010), 72–75
-
Finite-dimensional models of diffusion chaos
Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010), 860–875
-
Spatially inhomogeneous periodic solutions in distributed Hutchinson equation
Model. Anal. Inform. Sist., 16:4 (2009), 77–85
-
Difference approximations of “reaction–diffusion” equation on a segment
Model. Anal. Inform. Sist., 16:3 (2009), 96–115
-
The question of the realizability of the Landau scenario for the development of turbulence
TMF, 158:2 (2009), 292–311
-
Extremal dynamics of the generalized Hutchinson equation
Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009), 76–89
-
Dynamics of two coupled neuron-type oscillators
Model. Anal. Inform. Sist., 15:2 (2008), 75–88
-
Динамика взаимодействия пары осцилляторов нейронного типа
Matem. Mod. Kraev. Zadachi, 3 (2008), 77–80
-
A registration of age groups for the Hutchinson's equation
Model. Anal. Inform. Sist., 14:3 (2007), 29–42
-
The Buffer Phenomenon in One-Dimensional Piecewise Linear Mapping in Radiophysics
Mat. Zametki, 81:4 (2007), 507–514
-
Chaos phenomena in a circle of three unidirectionally connected oscillators
Zh. Vychisl. Mat. Mat. Fiz., 46:10 (2006), 1809–1821
-
Buffer phenomenon in systems with one and a half degrees of freedom
Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006), 1582–1593
-
The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor
Differ. Uravn., 41:2 (2005), 268–273
-
Chaotic buffering property in chains of coupled oscillators
Differ. Uravn., 41:1 (2005), 41–49
-
The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2
Zh. Vychisl. Mat. Mat. Fiz., 45:11 (2005), 2000–2016
-
Dynamic properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem
Differ. Uravn., 33:6 (1997), 805–811
-
The attractor of a bilocal model of the Hutchinson equation with
diffusion for a large coefficient of linear growth
Dokl. Akad. Nauk SSSR, 307:2 (1989), 351–353
-
On the anniversary of Sergei A. Kashchenko
Izvestiya VUZ. Applied Nonlinear Dynamics, 31:2 (2023), 125–127
-
To the 75th anniversary of Vyacheslav Zigmundovich Grines
Zhurnal SVMO, 23:4 (2021), 472–476
-
From the editor of the special issue
Model. Anal. Inform. Sist., 25:1 (2018), 5–6
-
From the editors of the special issue
Model. Anal. Inform. Sist., 24:3 (2017), 257
© , 2024