RUS  ENG
Full version
PEOPLE

Glyzin Sergey Dmitrievich

Publications in Math-Net.Ru

  1. Multidimensional hyperbolic chaos

    Funktsional. Anal. i Prilozhen., 58:4 (2024),  3–19
  2. A new approach to mathematical modeling of chemical synapses

    Izvestiya VUZ. Applied Nonlinear Dynamics, 32:3 (2024),  376–393
  3. Symmetric hyperbolic trap

    Mat. Zametki, 116:3 (2024),  372–387
  4. A family of piecewise-smooth solutions of a class of spatially distributed equations

    CMFD, 69:2 (2023),  263–275
  5. Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity

    Model. Anal. Inform. Sist., 30:2 (2023),  160–169
  6. Динамические системы на бесконечномерном торе: основы гиперболической теории

    Tr. Mosk. Mat. Obs., 84:1 (2023),  55–116
  7. Topologically Mixing Diffeomorphisms on the Infinite-Dimensional Torus

    Mat. Zametki, 113:6 (2023),  929–934
  8. Self-oscillatory processes in a discrete $RCL$-line with a tunnel diode

    TMF, 215:2 (2023),  207–224
  9. Релаксационные автоволны в математических моделях экологии

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  83–143
  10. Hunt for chimeras in fully coupled networks of nonlinear oscillators

    Izvestiya VUZ. Applied Nonlinear Dynamics, 30:2 (2022),  152–175
  11. Hyperbolicity Criterion for Torus Endomorphisms

    Mat. Zametki, 111:1 (2022),  134–139
  12. Elements of hyperbolic theory on an infinite-dimensional torus

    Uspekhi Mat. Nauk, 77:3(465) (2022),  3–72
  13. A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus

    Mat. Sb., 213:2 (2022),  50–95
  14. Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators

    TMF, 212:2 (2022),  213–233
  15. Traveling waves in fully coupled networks of linear oscillators

    Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022),  71–89
  16. On a mathematical model of the repressilator

    Algebra i Analiz, 33:5 (2021),  80–124
  17. On some modifications of Arnold's cat map

    Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021),  26–30
  18. On a class of Anosov diffeomorphisms on the infinite-dimensional torus

    Izv. RAN. Ser. Mat., 85:2 (2021),  3–59
  19. Periodic modes of group dominance in fully coupled neural networks

    Izvestiya VUZ. Applied Nonlinear Dynamics, 29:5 (2021),  775–798
  20. On the Existence and Stability of an Infinite-Dimensional Invariant Torus

    Mat. Zametki, 109:4 (2021),  508–528
  21. Expansive Endomorphisms on the Infinite-Dimensional Torus

    Funktsional. Anal. i Prilozhen., 54:4 (2020),  17–36
  22. Features of the algorithmic implementation of difference analogues of the logistic equation with delay

    Model. Anal. Inform. Sist., 27:3 (2020),  344–355
  23. Family of finite-dimensional maps induced by a logistic equation with a delay

    Matem. Mod., 32:3 (2020),  19–46
  24. Relaxation autowaves in a bi-local neuron model

    Tr. Mosk. Mat. Obs., 81:1 (2020),  41–85
  25. Solenoidal attractors of diffeomorphisms of annular sets

    Uspekhi Mat. Nauk, 75:2(452) (2020),  3–60
  26. On Some Sufficient Hyperbolicity Conditions

    Trudy Mat. Inst. Steklova, 308 (2020),  116–134
  27. Diffusion chaos and its invariant numerical characteristics

    TMF, 203:1 (2020),  10–25
  28. Equations with the Fermi-Pasta-Ulam and dislocations nonlinearity

    Izvestiya VUZ. Applied Nonlinear Dynamics, 27:4 (2019),  52–70
  29. New approach to gene network modeling

    Model. Anal. Inform. Sist., 26:3 (2019),  365–404
  30. A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations

    Mat. Sb., 210:2 (2019),  24–74
  31. Autowave processes in diffusion neuron systems

    Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019),  1495–1515
  32. Disordered oscillations in a neural network of three oscillators with a delayed broadcast connection

    Model. Anal. Inform. Sist., 25:5 (2018),  572–583
  33. Invariant characteristics of forced oscillations of a beam with longitudinal compression

    Model. Anal. Inform. Sist., 25:1 (2018),  54–62
  34. An approach to modeling artificial gene networks

    TMF, 194:3 (2018),  547–568
  35. Quasi-stable structures in circular gene networks

    Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018),  682–704
  36. Many-circuit canard trajectories and their applications

    Izv. RAN. Ser. Mat., 81:4 (2017),  108–157
  37. Mathematical model of Nicholson's experiment

    Model. Anal. Inform. Sist., 24:3 (2017),  365–386
  38. Relaxation oscillations in a system of two pulsed synaptically coupled neurons

    Model. Anal. Inform. Sist., 24:1 (2017),  82–93
  39. Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model

    Mat. Zametki, 101:1 (2017),  58–76
  40. Two-frequency self-oscillations in a FitzHugh–Nagumo neural network

    Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017),  94–110
  41. Two wave interactions in a Fermi–Pasta–Ulam model

    Model. Anal. Inform. Sist., 23:5 (2016),  548–558
  42. The annulus principle in the existence problem for a hyperbolic strange attractor

    Mat. Sb., 207:4 (2016),  15–46
  43. Buffering in cyclic gene networks

    TMF, 187:3 (2016),  560–579
  44. Dynamical properties of the Fisher–Kolmogorov–Petrovskii–Piscounov equation with deviation of the spatial variable

    Model. Anal. Inform. Sist., 22:5 (2015),  609–628
  45. Self-excited wave processes in chains of unidirectionally coupled impulse neurons

    Model. Anal. Inform. Sist., 22:3 (2015),  404–419
  46. Fisher–Kolmogorov–Petrovskii–Piscounov equation with delay

    Model. Anal. Inform. Sist., 22:2 (2015),  304–321
  47. Blue sky catastrophe in systems with non-classical relaxation oscillations

    Model. Anal. Inform. Sist., 22:1 (2015),  38–64
  48. Self-excited relaxation oscillations in networks of impulse neurons

    Uspekhi Mat. Nauk, 70:3(423) (2015),  3–76
  49. Blue sky catastrophe as applied to modeling of cardiac rhythms

    Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015),  1136–1155
  50. The buffer phenomenon in ring-like chains of unidirectionally connected generators

    Izv. RAN. Ser. Mat., 78:4 (2014),  73–108
  51. On the number of coexisting autowaves in the chain of coupled oscillators

    Model. Anal. Inform. Sist., 21:5 (2014),  162–180
  52. Non-Classical Relaxation Oscillations in Neurodynamics

    Model. Anal. Inform. Sist., 21:2 (2014),  71–89
  53. On One Means of Hard Excitation of Oscillations in Nonlinear Flutter Systems

    Model. Anal. Inform. Sist., 21:1 (2014),  32–44
  54. The theory of nonclassical relaxation oscillations in singularly perturbed delay systems

    Mat. Sb., 205:6 (2014),  21–86
  55. Autowave processes in continual chains of unidirectionally coupled oscillators

    Trudy Mat. Inst. Steklova, 285 (2014),  89–106
  56. Buffering effect in continuous chains of unidirectionally coupled generators

    TMF, 181:2 (2014),  254–275
  57. On a modification of the FitzHugh–Nagumo neuron model

    Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  430–449
  58. Relaxation self-oscillations in Hopfield networks with delay

    Izv. RAN. Ser. Mat., 77:2 (2013),  53–96
  59. Relaxation Cycles in a Generalized Neuron Model with Two Delays

    Model. Anal. Inform. Sist., 20:6 (2013),  179–199
  60. The Quasi-Normal Form of a System of Three Unidirectionally Coupled Singularly Perturbed Equations with Two Delays

    Model. Anal. Inform. Sist., 20:5 (2013),  158–167
  61. Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation

    Model. Anal. Inform. Sist., 20:3 (2013),  86–98
  62. Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain

    Model. Anal. Inform. Sist., 20:3 (2013),  43–57
  63. Dimensional Characteristics of Diffusion Chaos

    Model. Anal. Inform. Sist., 20:1 (2013),  30–51
  64. Modeling the Bursting Effect in Neuron Systems

    Mat. Zametki, 93:5 (2013),  684–701
  65. Periodic traveling-wave-type solutions in circular chains of unidirectionally coupled equations

    TMF, 175:1 (2013),  62–83
  66. Oscillations in Arrays of Nonlinear Elements in the Scott Experiment

    Model. Anal. Inform. Sist., 19:5 (2012),  56–68
  67. Bursting Behavior in the System of Coupled Oscillators with Delay and its Statistical Analysis

    Model. Anal. Inform. Sist., 19:3 (2012),  82–96
  68. Discrete autowaves in neural systems

    Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012),  840–858
  69. Quasi-periodic oscillations of a neuron equation with two delays

    Model. Anal. Inform. Sist., 18:1 (2011),  86–105
  70. Relaxation oscillations and diffusion chaos in the Belousov reaction

    Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011),  1400–1418
  71. The factor of delay in a system of coupled oscillators FitzHugh–Nagumo

    Model. Anal. Inform. Sist., 17:3 (2010),  134–143
  72. The account of delay in a connecting element between two oscillators

    Model. Anal. Inform. Sist., 17:2 (2010),  133–143
  73. Relaxation oscillations of electrically coupled neuron-like systems with delay

    Model. Anal. Inform. Sist., 17:2 (2010),  28–47
  74. Эффект запаздывания в цепи связи пары осцилляторов типа Фитцхью-Нагумо

    Matem. Mod. Kraev. Zadachi, 3 (2010),  75–78
  75. Уравнение "реакция – диффузия" и его конечномерные аналоги

    Matem. Mod. Kraev. Zadachi, 3 (2010),  72–75
  76. Finite-dimensional models of diffusion chaos

    Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010),  860–875
  77. Spatially inhomogeneous periodic solutions in distributed Hutchinson equation

    Model. Anal. Inform. Sist., 16:4 (2009),  77–85
  78. Difference approximations of “reaction–diffusion” equation on a segment

    Model. Anal. Inform. Sist., 16:3 (2009),  96–115
  79. The question of the realizability of the Landau scenario for the development of turbulence

    TMF, 158:2 (2009),  292–311
  80. Extremal dynamics of the generalized Hutchinson equation

    Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009),  76–89
  81. Dynamics of two coupled neuron-type oscillators

    Model. Anal. Inform. Sist., 15:2 (2008),  75–88
  82. Динамика взаимодействия пары осцилляторов нейронного типа

    Matem. Mod. Kraev. Zadachi, 3 (2008),  77–80
  83. A registration of age groups for the Hutchinson's equation

    Model. Anal. Inform. Sist., 14:3 (2007),  29–42
  84. The Buffer Phenomenon in One-Dimensional Piecewise Linear Mapping in Radiophysics

    Mat. Zametki, 81:4 (2007),  507–514
  85. Chaos phenomena in a circle of three unidirectionally connected oscillators

    Zh. Vychisl. Mat. Mat. Fiz., 46:10 (2006),  1809–1821
  86. Buffer phenomenon in systems with one and a half degrees of freedom

    Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006),  1582–1593
  87. The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor

    Differ. Uravn., 41:2 (2005),  268–273
  88. Chaotic buffering property in chains of coupled oscillators

    Differ. Uravn., 41:1 (2005),  41–49
  89. The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2

    Zh. Vychisl. Mat. Mat. Fiz., 45:11 (2005),  2000–2016
  90. Dynamic properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem

    Differ. Uravn., 33:6 (1997),  805–811
  91. The attractor of a bilocal model of the Hutchinson equation with diffusion for a large coefficient of linear growth

    Dokl. Akad. Nauk SSSR, 307:2 (1989),  351–353

  92. On the anniversary of Sergei A. Kashchenko

    Izvestiya VUZ. Applied Nonlinear Dynamics, 31:2 (2023),  125–127
  93. To the 75th anniversary of Vyacheslav Zigmundovich Grines

    Zhurnal SVMO, 23:4 (2021),  472–476
  94. From the editor of the special issue

    Model. Anal. Inform. Sist., 25:1 (2018),  5–6
  95. From the editors of the special issue

    Model. Anal. Inform. Sist., 24:3 (2017),  257


© Steklov Math. Inst. of RAS, 2024