RUS  ENG
Full version
PEOPLE

Kriksin Yury Anatolievich

Publications in Math-Net.Ru

  1. Linear Fredholm integral equations of the first kind with constraints on the solution

    Dokl. RAN. Math. Inf. Proc. Upr., 524 (2025),  25–33
  2. On an approximation by band-limited functions

    Dokl. RAN. Math. Inf. Proc. Upr., 520:1 (2024),  57–63
  3. On quantitative assessment of chirality: right- and left-handed geometric objects

    Dokl. RAN. Math. Inf. Proc. Upr., 517 (2024),  22–29
  4. Entropic regularization of the discontinuous Galerkin method in conservative variables for three-dimensional Euler equations

    Mat. Model., 36:4 (2024),  77–91
  5. Degeneration estimation of a tetrahedral in a tetrahedral partition of the three-dimensional space

    Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023),  44–51
  6. On one approach to the assessment of a triangular element degeneration in a triangulation

    Dokl. RAN. Math. Inf. Proc. Upr., 510 (2023),  52–56
  7. Entropic regularization of the discontinuous Galerkin method for two-dimensional Euler equations in triangulated domains

    Mat. Model., 35:3 (2023),  3–19
  8. A high-accuracy algorithm for solving problems of electrostatics in a nonhomogeneous spatially periodic dielectric medium

    Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022),  40–45
  9. Entropic regularization of the discontinuous Galerkin method in conservative variables for two-dimensional Euler equations

    Mat. Model., 33:12 (2021),  49–66
  10. Entropy stable discontinuous Galerkin method for two-dimensional Euler equations

    Mat. Model., 33:2 (2021),  125–140
  11. Entropy stable discontinuous Galerkin method for Euler equations using non-conservative variables

    Mat. Model., 32:9 (2020),  87–102
  12. Discontinuous Galerkin method with entropic slope limiter for Euler equations

    Mat. Model., 32:2 (2020),  113–128
  13. Numerical solution of the Einfeldt problem based on the discontinuous Galerkin method

    Keldysh Institute preprints, 2019, 090, 22 pp.
  14. Ensuring the entropy stability of the discontinuous Galerkin method in gas-dynamics problems

    Keldysh Institute preprints, 2019, 051, 22 pp.
  15. Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations

    Keldysh Institute preprints, 2019, 018, 25 pp.
  16. Variational entropic regularization of discontinuous Galerkin method for gas dynamics equations

    Mat. Model., 31:5 (2019),  69–84
  17. Entropic regularization of Discontinuous Galerkin method in one-dimensional problems of gas dynamics

    Keldysh Institute preprints, 2018, 100, 22 pp.
  18. Construction of exact solutions of certain equations of hyperbolic type containing a discontinuity propagating along a non-homogeneous background

    Keldysh Institute preprints, 2018, 017, 14 pp.
  19. Hybrid approach to solving single-dimensional gas dynamics equations

    Mat. Model., 30:8 (2018),  17–31
  20. The model of surface pattern recognition by copolymer

    Mat. Model., 17:9 (2005),  103–112
  21. The model of copolymer adsorption on the surface with active centers

    Mat. Model., 17:2 (2005),  3–10
  22. The modelling of secondary structure of polimer chain

    Mat. Model., 15:11 (2003),  110–120
  23. The model of protein-like copolymer with hydrogen bonds

    Mat. Model., 15:4 (2003),  101–106
  24. The algorithm for the solution of the integral equations for multicomponent polyelectrolyte systems

    Mat. Model., 14:7 (2002),  74–80
  25. Reconstruction of proteinlike copolymer globular structure

    Mat. Model., 14:6 (2002),  82–90
  26. Аn algorithm for solution of integral equations for two-dimension polymer media

    Mat. Model., 13:5 (2001),  3–10
  27. The algorithm for the solution of the integral equations system for copolymer with coulomb interactions

    Mat. Model., 12:10 (2000),  110–120
  28. On the convergence of explicit two-layer iterative procedure for the polymer theory integral equation

    Mat. Model., 11:12 (1999),  105–112
  29. On an algorithm for the solution of the polyelectrolyte integral equations system with molecular closure

    Mat. Model., 10:10 (1998),  112–122
  30. The algorithm for solving of charged polymer chains integral equation

    Mat. Model., 9:11 (1997),  119–125
  31. Об одном критерии продолжаемости решения системы обыкновенных дифференциальных уравнений

    Mat. Model., 9:10 (1997),  28–29
  32. Constructing conservative difference schemes for problems of classical mechanics

    Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996),  156–157
  33. Solutions of the system of Hamilton difference equations with external action

    Zh. Vychisl. Mat. Mat. Fiz., 36:3 (1996),  159–160
  34. On the theory of Hamiltonian systems with external action

    Dokl. Akad. Nauk, 344:2 (1995),  172–174
  35. The inverse problem of source reconstruction for convective diffusion equation

    Mat. Model., 7:11 (1995),  95–108
  36. On the convergence of the Newton method for the solution of a conservative difference scheme for a problem in classical mechanics

    Zh. Vychisl. Mat. Mat. Fiz., 35:12 (1995),  1819–1830
  37. Non-local properties of solutions of Hamilton's difference equations with external action

    Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995),  718–727
  38. Balance model of impurity propagation in plan filtration flow

    Mat. Model., 5:6 (1993),  69–84
  39. Nonlocal solutions of problems of nonlinear dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 33:12 (1993),  1826–1843
  40. Energy bounds of some nonlinear dynamical systems with an external action

    Zh. Vychisl. Mat. Mat. Fiz., 33:9 (1993),  1275–1293
  41. A conservative difference scheme for a system of Hamiltonian equations with external action

    Zh. Vychisl. Mat. Mat. Fiz., 33:2 (1993),  206–218
  42. Mathematical model of stable stationary structures in molecular monolayers

    Mat. Model., 4:5 (1992),  36–52
  43. Linear acoustic waves scattering in LB-films on inhomogeneities

    Mat. Model., 4:2 (1992),  3–14
  44. Dynamical systems with an external action

    Zh. Vychisl. Mat. Mat. Fiz., 32:3 (1992),  417–433
  45. Simulation of Langmuir's monolayer dynamics

    Mat. Model., 3:11 (1991),  39–46
  46. Numerical modelling of stationary structures in Langmuir's monolayer

    Mat. Model., 2:5 (1990),  18–27
  47. Dynamical properties of Langmuir–Blodgett's molecular films

    Mat. Model., 2:4 (1990),  39–53
  48. Stationary structures in Langmuir–Blodgett molecular films

    Mat. Model., 2:1 (1990),  3–13
  49. On the spectral approach to the construction of local regularization algorithms

    Dokl. Akad. Nauk SSSR, 304:3 (1989),  521–525
  50. Numerical modelling of impulsive action on a soliton in quasi-one-dimensional systems

    Mat. Model., 1:4 (1989),  87–99
  51. A local regularization method for linear operator equations of the first kind and its applications

    Zh. Vychisl. Mat. Mat. Fiz., 28:6 (1988),  793–808
  52. The choice of regularization parameter for the solution of a linear operator equation

    Zh. Vychisl. Mat. Mat. Fiz., 25:7 (1985),  1092–1097
  53. Strong regularization and some of its applications

    Dokl. Akad. Nauk SSSR, 278:4 (1984),  800–802
  54. Solution of linear ill-posed problems by the local residual method

    Zh. Vychisl. Mat. Mat. Fiz., 24:12 (1984),  1892–1897
  55. The principle of quasioptimality for linear ill-posed problems in Hilbert space

    Zh. Vychisl. Mat. Mat. Fiz., 24:11 (1984),  1603–1613
  56. Some stochastically regularizing algorithms based on a difference representation of a quasioptimal measure

    Dokl. Akad. Nauk SSSR, 271:3 (1983),  521–524
  57. On the porosity of a densely packed powder of spherical particles

    Dokl. Akad. Nauk SSSR, 265:4 (1982),  798–801
  58. Quasioptimality and residual criteria for systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 22:6 (1982),  1287–1297
  59. A. N. Tikhonov's regularizing operators in some ill-posed problems for differential equations

    Differ. Uravn., 17:10 (1981),  1842–1850
  60. On the question of quasi-optimal choice of a regularized approximation

    Dokl. Akad. Nauk SSSR, 248:3 (1979),  531–535
  61. Solution of the Hadamard problem by a Tikhonov-regularizing algorithm

    Zh. Vychisl. Mat. Mat. Fiz., 19:6 (1979),  1462–1470


© Steklov Math. Inst. of RAS, 2025