RUS  ENG
Full version
PEOPLE

Berberian Samvel Levonovich

Publications in Math-Net.Ru

  1. On the classification of points of the unit circle for subharmonic functions of class $\mathfrak{A}^*$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 2,  81–84
  2. Angular boundary limits for normal subharmonic functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1,  49–53
  3. Meyer points and refined Meyer points for arbitrary harmonic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 5,  26–32
  4. On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 4,  85–88
  5. Refinement of the Plessner theorem and Plessner points for arbitrary harmonic functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 4,  58–61
  6. On boundary theorems of uniqueness for logarithmically-subharmonic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 9,  3–9
  7. On boundary points of arbitrary harmonic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5,  3–11
  8. On angular boundary limits of normal subharmonic functions

    Eurasian Math. J., 4:2 (2013),  49–56
  9. Boundedness of normal harmonic functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 2,  57–61
  10. Some applications of $P'$-sequences in studying boundary properties of arbitrary harmonic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 9,  3–9
  11. The distribution of values of harmonic functions in the unit disk

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 6,  12–19
  12. A classification of boundary singularities of normal subharmonic functions and applications of it

    Uspekhi Mat. Nauk, 62:3(375) (2007),  207–208
  13. Angular limits of harmonic functions defined in a unit circle

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 1,  55–57
  14. Corner boundary values of normal continuous functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 3,  22–28


© Steklov Math. Inst. of RAS, 2024