|
|
Publications in Math-Net.Ru
-
On the classification of points of the unit circle for subharmonic functions of class $\mathfrak{A}^*$
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 2, 81–84
-
Angular boundary limits for normal subharmonic functions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1, 49–53
-
Meyer points and refined Meyer points for arbitrary harmonic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 5, 26–32
-
On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 4, 85–88
-
Refinement of the Plessner theorem and Plessner points for arbitrary harmonic functions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 4, 58–61
-
On boundary theorems of uniqueness for logarithmically-subharmonic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 9, 3–9
-
On boundary points of arbitrary harmonic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5, 3–11
-
On angular boundary limits of normal subharmonic functions
Eurasian Math. J., 4:2 (2013), 49–56
-
Boundedness of normal harmonic functions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 2, 57–61
-
Some applications of $P'$-sequences in studying boundary properties of arbitrary harmonic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 9, 3–9
-
The distribution of values of harmonic functions in the unit disk
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 6, 12–19
-
A classification of boundary singularities of normal subharmonic functions and applications of it
Uspekhi Mat. Nauk, 62:3(375) (2007), 207–208
-
Angular limits of harmonic functions defined in a unit circle
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 1, 55–57
-
Corner boundary values of normal continuous functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 3, 22–28
© , 2024