RUS  ENG
Full version
PEOPLE

Brazwe Rudolf Aleksandrovich

Publications in Math-Net.Ru

  1. Quanta of the Righi–Leduc coefficients and magneto-thermal resistance

    University proceedings. Volga region. Physical and mathematical sciences, 2024, no. 1,  151–159
  2. The ratio of electron and phonon thermal conductivity in nanoscale conductors

    University proceedings. Volga region. Physical and mathematical sciences, 2023, no. 2,  68–76
  3. Seebeck, Peltier and Thomson coefficient quanta in nanoscale conductors

    University proceedings. Volga region. Physical and mathematical sciences, 2023, no. 2,  59–67
  4. Quantum-dimensional insulators

    University proceedings. Volga region. Physical and mathematical sciences, 2023, no. 1,  115–127
  5. Consideration of quantum-dimensional effects in designing plasmon-acoustic devices of the terahertz frequency range

    University proceedings. Volga region. Physical and mathematical sciences, 2023, no. 1,  85–92
  6. Transverse piezo- and pyroelectric effects in 2D nanoallotropes of boron nitride caused by the ripple formation

    Fizika Tverdogo Tela, 62:8 (2020),  1265–1269
  7. Piezoelectric properties of 2D nanoallotropes of boron nitride

    Fizika Tverdogo Tela, 61:11 (2019),  2190–2194
  8. Photoelastic properties of graphenes

    Fizika Tverdogo Tela, 59:2 (2017),  334–337
  9. Propagation of electromagnetic waves in conducting graphene-like carbon nanoallotropes

    Zhurnal Tekhnicheskoi Fiziki, 87:5 (2017),  762–765
  10. 2D-crystals with five interatomic bonds of Kepler nets type

    University proceedings. Volga region. Physical and mathematical sciences, 2016, no. 1,  87–100
  11. Electronic and optical properties of carbon supracrystalline $sp^2$ nanoallotropes

    Zhurnal Tekhnicheskoi Fiziki, 86:5 (2016),  112–117
  12. Band structures of carbon and silicon 2D supracrystals

    University proceedings. Volga region. Physical and mathematical sciences, 2015, no. 1,  130–139
  13. Mathematical modeling of the coiled supracrystalline nanotubes

    University proceedings. Volga region. Physical and mathematical sciences, 2015, no. 1,  120–129
  14. Mathematical modelling of suprafullerenes and suprafulleranes

    University proceedings. Volga region. Physical and mathematical sciences, 2014, no. 2,  159–168
  15. Mathematical model of transport phenomena in the planar and nanotubular supracrystalline structures

    Matem. Mod., 25:4 (2013),  83–95
  16. Computer simulation of electrical properties of supracrystalline nanotubes

    University proceedings. Volga region. Physical and mathematical sciences, 2011, no. 3,  131–139
  17. Computer modeling of the physical properties of supracrystals

    University proceedings. Volga region. Physical and mathematical sciences, 2011, no. 2,  105–112
  18. Method for searching for pure modes of elastic waves in crystals from 3D phase velocity surfaces

    University proceedings. Volga region. Physical and mathematical sciences, 2011, no. 1,  116–125
  19. A general method for searching for pure elastic wave modes in crystals

    University proceedings. Volga region. Physical and mathematical sciences, 2010, no. 3,  115–125
  20. Mathematical models of transition phenomena in the inverse gases

    Matem. Mod., 20:5 (2008),  110–118
  21. Mathematical model of thermo-electro-hydrodynamic convention in semiconductors in the presence of charge carriers collisions

    Matem. Mod., 17:2 (2005),  109–118

  22. Quanta of Ettingshausen and magnetothermoelectric coefficients

    University proceedings. Volga region. Physical and mathematical sciences, 2024, no. 2,  83–90
  23. Quanta of nernst coefficients and thermomagnetic emf

    University proceedings. Volga region. Physical and mathematical sciences, 2024, no. 2,  74–82
  24. Quanta of linear heat capacity and linear thermal inductance in nanoscale heat-conducting pipes

    University proceedings. Volga region. Physical and mathematical sciences, 2024, no. 1,  138–150
  25. Quanta of hall and magnetoresistance coefficients in electrically conductive nanoribbons

    University proceedings. Volga region. Physical and mathematical sciences, 2023, no. 4,  90–98
  26. A mathematical model of the negative refraction of electromagnetic waves in an electrically conductive medium allowing the inversion of an electronic subsystem

    University proceedings. Volga region. Physical and mathematical sciences, 2008, no. 1,  102–109


© Steklov Math. Inst. of RAS, 2024