RUS  ENG
Full version
PEOPLE

Konovalov Anatolii Nikolaevich

Publications in Math-Net.Ru

  1. Explicitly solvable optimal discrete models with controlled disbalance of the total mechanical energy for dynamical problems of linear elasticity

    Sibirsk. Mat. Zh., 56:5 (2015),  1092–1099
  2. Method of Revision of Boundary Conditions for Neumann Problem

    Sib. Èlektron. Mat. Izv., 5 (2008),  543–548
  3. An adaptive upper relaxation method

    Differ. Uravn., 42:7 (2006),  943–950
  4. The Steepest Descent Method with an Adaptive Alternating-Triangular Preconditioner

    Differ. Uravn., 40:7 (2004),  953–963
  5. A Remark on the Theory of the Commutative Alternating Direction Method

    Differ. Uravn., 39:7 (2003),  923–932
  6. To the theory of the alternating triangle iteration method

    Sibirsk. Mat. Zh., 43:3 (2002),  552–572
  7. Iterative methods for operator equations with a conjugate-factorized structure

    Sibirsk. Mat. Zh., 41:2 (2000),  370–384
  8. A dynamic problem in the theory of elasticity in the “velocities-stresses” formulation

    Differ. Uravn., 35:2 (1999),  238–248
  9. Conjugate-factorized models in mathematical physics problems

    Sib. Zh. Vychisl. Mat., 1:1 (1998),  25–57
  10. Numerical methods in dynamic problems of elasticity theory

    Sibirsk. Mat. Zh., 38:3 (1997),  551–568
  11. Variational optimization of iterative methods of splitting

    Sibirsk. Mat. Zh., 38:2 (1997),  312–325
  12. Iterative methods in problems of the theory of elasticity

    Dokl. Akad. Nauk, 340:5 (1995),  589–591
  13. Diagonal regularizers in problems of the theory of elasticity

    Dokl. Akad. Nauk, 340:4 (1995),  470–472
  14. Numerical methods for static problems of elasticity

    Sibirsk. Mat. Zh., 36:3 (1995),  573–589
  15. On the Buckley–Leverett model of filtration of a two-phase incompressible liquid

    Dokl. Akad. Nauk SSSR, 216:2 (1974),  282–284
  16. Some questions that arise in the numerical solution of filtration problems for a two-phase incompressible fluid

    Trudy Mat. Inst. Steklov., 122 (1973),  3–23
  17. The numerical solution of a mixed problem in elasticity theory

    Zh. Vychisl. Mat. Mat. Fiz., 9:2 (1969),  469–474
  18. Difference methods for calculation of plane problems of the theory of elasticity

    Trudy Mat. Inst. Steklov., 74 (1966),  38–54
  19. Iterative system for solving static problems in the theory of elasticity

    Zh. Vychisl. Mat. Mat. Fiz., 4:5 (1964),  942–945
  20. Application of the splitting method to the numerical solution of dynamic problems in elasticity theory

    Zh. Vychisl. Mat. Mat. Fiz., 4:4 (1964),  760–764
  21. The method of fractional steps for solving the Cauchy problem for a multi-dimensional wave equation

    Dokl. Akad. Nauk SSSR, 147:1 (1962),  25–27

  22. In memory of Aleksandr Sergeevich Kholodov

    Matem. Mod., 30:1 (2018),  135–136
  23. Yurii Leonidovich Ershov (on his seventieth birthday)

    Uspekhi Mat. Nauk, 66:1(397) (2011),  201–204
  24. On the young scientists Workshop on the mathematical modelling of the developing of North Area

    Matem. Mod., 10:3 (1998),  126–127
  25. On the anniversary of Anatoly Semenovich Alekseev

    Sib. Zh. Vychisl. Mat., 1:4 (1998),  299–300
  26. Gurii Ivanovich Marchuk (on the occasion of his seventieth birthday)

    Sibirsk. Mat. Zh., 36:3 (1995),  483–487
  27. To the 50th birthday of the Member of the Academy, N. N. Yanenko

    Sibirsk. Mat. Zh., 12:6 (1971),  1179–1180
  28. Errata

    Zh. Vychisl. Mat. Mat. Fiz., 5:6 (1965),  978


© Steklov Math. Inst. of RAS, 2025