RUS  ENG
Full version
PEOPLE

Khachatryan Khachatur Aghavardovich

Publications in Math-Net.Ru

  1. On the constructive solvability of one class nonlinear integral equations of the Hammerstein type on the whole line

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 3,  89–106
  2. On the global solvability of one class of nonlinear integral equations of Hammerstein–Volterra type on the nonnegative half-line

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:2 (2025),  181–194
  3. On an integral equation with concave nonlinearity

    Bulletin of Irkutsk State University. Series Mathematics, 50 (2024),  66–82
  4. An iterative method for solving one class of non-linear integral equations with Nemytskii operator on the positive semi-axis

    Izv. RAN. Ser. Mat., 88:4 (2024),  168–203
  5. Questions of existence and uniqueness of the solution of one class of an infinite system of nonlinear two-dimensional equations

    Izv. Saratov Univ. Math. Mech. Inform., 24:4 (2024),  498–511
  6. О конструктивной разрешимости одной начально–краевой задачи для нелинейного интегро–дифференциального уравнения второго порядка на полуоси

    Tr. Mosk. Mat. Obs., 85:1 (2024),  39–58
  7. Constructive study of the solvability of one class of nonlinear integral equations with a symmetric kernel

    Mat. Tr., 27:3 (2024),  111–138
  8. Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of Hammerstein–Stieltjes type

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024),  249–269
  9. On qualitative properties of the solution of a boundary value problem for a system of nonlinear integral equations

    TMF, 218:1 (2024),  168–186
  10. On the solvability of an infinite system of algebraic equations with monotone and concave nonlinearity

    Vladikavkaz. Mat. Zh., 26:2 (2024),  82–94
  11. Stationary states in population dynamics with migration and distributed offspring

    CMFD, 69:4 (2023),  578–587
  12. On some systems of nonlinear integral equations on the whole axis with monotonous Hammerstein–Volterra type operators

    Eurasian Math. J., 14:3 (2023),  35–53
  13. Existence and uniqueness theorems for one infinite system of nonlinear algebraic equations

    Bulletin of Irkutsk State University. Series Mathematics, 44 (2023),  44–54
  14. On non-trivial solvability of one system of non-linear integral equations on the real axis

    Izv. RAN. Ser. Mat., 87:5 (2023),  215–231
  15. On a class of nonlinear integral equations of the Hammerstein–Volterra type on a semiaxis

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1,  75–86
  16. Однопараметрическое семейство неограниченных положительных решений для одного класса нелинейных трехмерных интегральных уравнений с оператором типа Гаммерштейна–Немыцкого

    Tr. Mosk. Mat. Obs., 84:1 (2023),  37–53
  17. Uniqueness of the Solution of a Class of Integral Equations with Sum-Difference. Kernel and with Convex Nonlinearity on the Positive Half-Line

    Mat. Zametki, 113:4 (2023),  529–543
  18. Existence and uniqueness theorems for one system of integral equations with two nonlinearities

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023),  202–218
  19. On nonlinear convolution-type integral equations in the theory of $p$-adic strings

    TMF, 216:1 (2023),  184–200
  20. The solvability of an infinite system of nonlinear algebraic equations with Toeplitz matrix

    Proceedings of the YSU, Physical and Mathematical Sciences, 57:3 (2023),  69–78
  21. On the solvability of a class of nonlinear two-dimensional integral equations Hammerstein–Nemytskii type on the plane

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:3 (2023),  446–461
  22. On the solubility of a class of two-dimensional integral equations on a quarter plane with monotone nonlinearity

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 2,  19–38
  23. Asymptotic behavior of the solution for one class of nonlinear integral equations of Hammerstein type on the whole axis

    CMFD, 68:2 (2022),  376–391
  24. On summable solutions of a class of nonlinear integral equations on the whole line

    Izv. RAN. Ser. Mat., 86:5 (2022),  157–168
  25. On the solvability of a class of nonlinear Hammerstein integral equations on the semiaxis

    Izv. Saratov Univ. Math. Mech. Inform., 22:2 (2022),  169–179
  26. Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics

    Tr. Mosk. Mat. Obs., 83:2 (2022),  219–239
  27. Mathematical model of the spread of a pandemic like COVID-19

    Tr. Mosk. Mat. Obs., 83:1 (2022),  63–75
  28. On a class of nonlinear integro-differential equations

    Mat. Tr., 25:1 (2022),  192–220
  29. On the solvability of a system of nonlinear integral equations with a monotone Hammerstein type operator

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  201–214
  30. On nontrivial solvability of one class of nonlinear integral equations with conservative kernel on the positive semi-axis

    Proceedings of the YSU, Physical and Mathematical Sciences, 56:1 (2022),  7–18
  31. On the qualitative properties of a solution for one system of infinite nonlinear algebraic equations

    Vladikavkaz. Mat. Zh., 24:4 (2022),  5–18
  32. Questions of the existence and uniqueness of the solution of one class of nonlinear integral equations on the whole line

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:3 (2022),  446–479
  33. On the solvability of a class of nonlinear Urysohn integral equations on the positive half-line

    Bulletin of Irkutsk State University. Series Mathematics, 36 (2021),  57–68
  34. Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1,  31–51
  35. Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations

    Tr. Mosk. Mat. Obs., 82:2 (2021),  313–327
  36. Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  188–206
  37. On solvability of one infinite system of nonlinear functional equations in the theory of epidemics

    Eurasian Math. J., 11:2 (2020),  52–64
  38. Existence and uniqueness of solution of a certain boundary-value problem for a convolution integral equation with monotone non-linearity

    Izv. RAN. Ser. Mat., 84:4 (2020),  198–207
  39. Solvability of some nonlinear boundary value problems for singular integral equations of convolution type

    Tr. Mosk. Mat. Obs., 81:1 (2020),  3–40
  40. Единственность решения одной системы интегральных уравнений на полуоси с выпуклой нелинейностью

    Mat. Tr., 23:2 (2020),  187–203
  41. On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein-Nemytskii type on the whole axis

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  278–287
  42. On the Solvability of a Class of Nonlinear Hammerstein–Stieltjes Integral Equations on the Whole Line

    Trudy Mat. Inst. Steklova, 308 (2020),  253–264
  43. On positive solutions of a boundary value problem for a nonlinear integro-differential equation on a semi-infinite interval

    Vladikavkaz. Mat. Zh., 22:2 (2020),  70–82
  44. On alternating and bounded solutions of one class of integral equations on the entire axis with monotonic nonlinearity

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020),  644–662
  45. On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:4 (2020),  423–436
  46. The solvability of a system of nonlinear integral equations of Hammerstein type on the whole line

    Izv. Saratov Univ. Math. Mech. Inform., 19:2 (2019),  164–181
  47. On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic

    Tr. Mosk. Mat. Obs., 80:1 (2019),  113–131
  48. On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread

    Trudy Mat. Inst. Steklova, 306 (2019),  287–303
  49. Solvability of some classes of nonlinear singular boundary value problems in the theory of $p$-adic open–closed strings

    TMF, 200:1 (2019),  106–117
  50. A uniqueness theorem for a nonlinear singular integral equation arising in $p$-adic string theory

    Proceedings of the YSU, Physical and Mathematical Sciences, 53:1 (2019),  17–22
  51. On the solvability of a class of boundary value problems for systems of the integral equations with power nonlinearity on the whole axis

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 2,  54–73
  52. On the solubility of certain classes of non-linear integral equations in $p$-adic string theory

    Izv. RAN. Ser. Mat., 82:2 (2018),  172–193
  53. One initial boundary-value problem for integro-differential equation of the second order with power nonlinearity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 6,  48–62
  54. On the solvability of a boundary value problem in $ p$-adic string theory

    Tr. Mosk. Mat. Obs., 79:1 (2018),  117–132
  55. Solvability issues for a class of convolution type nonlinear integral equations in $\mathbb {R}^n$

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  247–262
  56. Solvability of a nonlinear integral equation in dynamical string theory

    TMF, 195:1 (2018),  44–53
  57. On solvability of class of nonlinear integral equations in $p$-adic string theory

    Ufimsk. Mat. Zh., 10:4 (2018),  12–23
  58. The existence of odd solution for one boundary-value problem with power nonlinearity

    Sib. J. Pure and Appl. Math., 18:4 (2018),  88–96
  59. On solvability of one class of Urysohn type nonlinear integral equation on the whole line

    Izv. Saratov Univ. Math. Mech. Inform., 17:1 (2017),  40–50
  60. On the solvability of one class of two-dimensional Urysohn integral equations

    Mat. Tr., 20:2 (2017),  193–205
  61. A one-parameter family of positive solutions of the non-linear stationary Boltzmann equation (in the framework of a modified model)

    Uspekhi Mat. Nauk, 72:3(435) (2017),  191–192
  62. On the nontrivial solvability of one class of nonlinear integral equations of the Urysohn type

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  266–273
  63. On solvability of an infinite nonlinear system of algebraic equations with Teoplitz–Hankel matrices

    Proceedings of the YSU, Physical and Mathematical Sciences, 51:2 (2017),  158–167
  64. One parameter families of positive solutions of some classes of convolution type nonlinear integral equations

    Sib. J. Pure and Appl. Math., 17:1 (2017),  91–108
  65. Some problems concerning the solvability of the nonlinear stationary Boltzmann equation in the framework of the BGK model

    Tr. Mosk. Mat. Obs., 77:1 (2016),  103–130
  66. Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave

    TMF, 189:2 (2016),  239–255
  67. One-parametric family of positive solutions for a class of nonlinear discrete Hammerstein–Volterra equations

    Ufimsk. Mat. Zh., 8:1 (2016),  15–21
  68. On solvability of a Hammerstein–Voltera type nonlinear system of integral equations in critical case

    Vladikavkaz. Mat. Zh., 18:4 (2016),  71–79
  69. Solvability of a nonlinear integral equation arising in kinetic theory

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 2,  36–41
  70. Positive solubility of some classes of non-linear integral equations of Hammerstein type on the semi-axis and on the whole line

    Izv. RAN. Ser. Mat., 79:2 (2015),  205–224
  71. On solvability of one class of nonlinear integral-differential equation with Hammerstein non-compact operator arising in a theory of income distribution

    J. Sib. Fed. Univ. Math. Phys., 8:4 (2015),  416–425
  72. On the solvability of one class of nonlinear integral equations in $L_1(0,+\infty)$

    Mat. Tr., 18:1 (2015),  190–200
  73. On One Nonlinear Boundary-Value Problem in Kinetic Theory of Gases

    Zh. Mat. Fiz. Anal. Geom., 10:3 (2014),  320–327
  74. On positive solutions of one class of nonlinear integral equations of Hammerstein–Nemytskiĭ type on the whole axis

    Tr. Mosk. Mat. Obs., 75:1 (2014),  1–14
  75. Qualitative difference between solutions of stationary model Boltzmann equations in the linear and nonlinear cases

    TMF, 180:2 (2014),  272–288
  76. On solvability of a class of nonlinear integral equations with Hammerstein type noncompact operator in the space $L_1(R^+)$

    Proceedings of the YSU, Physical and Mathematical Sciences, 2014, no. 3,  16–23
  77. On the solvability of one class of boundary-value problems for non-linear integro-differential equation in kinetic theory of plazma

    J. Sib. Fed. Univ. Math. Phys., 6:4 (2013),  451–461
  78. On solution of a system of Hammerstein–Nemitskii type nonlinear integral equations on whole axis

    Tr. Inst. Mat., 21:2 (2013),  154–161
  79. On the solvability of an initial-boundary value problem for a nonlinear integro-differential equation with a noncompact operator of Hammerstein type

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  308–315
  80. On some nonlinear integral and integro-differential equations with noncompact operators on positive half-line

    Ufimsk. Mat. Zh., 5:2 (2013),  31–42
  81. Solution of one Volterra type nonlinear integral equation on positive semi-axis

    Proceedings of the YSU, Physical and Mathematical Sciences, 2013, no. 3,  12–17
  82. On some classes of nonlinear integral equations with noncompact operators

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  181–188
  83. On solvability one Hammerstein–Nemitski type nonlinear integral differential equation with noncompact operator in $W_1^1(\mathbb R^+)$

    Algebra i Analiz, 24:1 (2012),  223–247
  84. On a class of integral equations of Urysohn type with strong non-linearity

    Izv. RAN. Ser. Mat., 76:1 (2012),  173–200
  85. Nontrivial solvability of a class of nonlinear integro-differential equations of second order

    Mat. Tr., 15:2 (2012),  172–193
  86. Qualitative difference between solutions for a model of the Boltzmann equation in the linear and nonlinear cases

    TMF, 172:3 (2012),  497–504
  87. On nontrivial solvability of a nonlinear Hammerstein–Volterra type integral equation

    Vladikavkaz. Mat. Zh., 14:2 (2012),  57–66
  88. On solvability of a nonlinear problem in theory of income distribution

    Eurasian Math. J., 2:2 (2011),  75–88
  89. Solvability of some classes of nonlinear integro-differential equations with noncompact operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 1,  91–100
  90. On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator

    Ufimsk. Mat. Zh., 3:1 (2011),  103–112
  91. On solvability of one class of Hammerstein nonlinear integral equations

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 2,  67–83
  92. Solubility of a class of second-order integro-differential equations with monotone non-linearity on a semi-axis

    Izv. RAN. Ser. Mat., 74:5 (2010),  191–204
  93. A nonlinear integral equation of Hammerstein type with a noncompact operator

    Mat. Sb., 201:4 (2010),  125–136
  94. On solvability of some classes of Urysohn nonlinear integral equations with noncompact operators

    Ufimsk. Mat. Zh., 2:2 (2010),  102–117
  95. On one Urysohn type nonlinear integral equation with noncompact operator

    Proceedings of the YSU, Physical and Mathematical Sciences, 2010, no. 3,  23–28
  96. On the solvability of a nonlinear integro-differential equation arising in the income distribution problem

    Zh. Vychisl. Mat. Mat. Fiz., 50:10 (2010),  1793–1802
  97. Sufficient conditions for the solvability of the Uryson integral equation on a half-axis

    Dokl. Akad. Nauk, 425:4 (2009),  462–465
  98. Solvability of a Class of Integro-Differential Equations of First Order with Variable Coefficients

    Mat. Zametki, 83:6 (2008),  933–940
  99. The etimation of one Volterian type integral equation

    Proceedings of the YSU, Physical and Mathematical Sciences, 2003, no. 1,  21–26
  100. Application of the albedo shifting method to an integral equation

    Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002),  905–912


© Steklov Math. Inst. of RAS, 2025