RUS  ENG
Full version
PEOPLE

Chistyakov Denis Sergeevich

Publications in Math-Net.Ru

  1. Isomorphisms of semigroups of endomorphisms of mixed Abelian groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 7,  54–60
  2. Affine Near-Rings and Related Structures

    Mat. Zametki, 103:6 (2018),  936–947
  3. On the Determinability of Mixed Abelian Groups by Their Endomorphism Semigroups

    Mat. Zametki, 103:3 (2018),  364–371
  4. On homogeneous mappings of mixed modules

    Chebyshevskii Sb., 18:2 (2017),  256–266
  5. On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings

    Fundam. Prikl. Mat., 21:1 (2016),  217–224
  6. $UA$-properties of modules over commutative Noetherian rings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 11,  42–52
  7. On homogeneous mappings of finitely presented modules over the ring of polyadic numbers

    Fundam. Prikl. Mat., 20:6 (2015),  229–235
  8. On the theory of near-vector spaces

    Fundam. Prikl. Mat., 20:5 (2015),  197–202
  9. Separable torsion-free modules with $UA$-rings of endomorphisms

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 6,  53–59
  10. Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms

    Mat. Zametki, 98:6 (2015),  898–906
  11. Mixed Abelian Groups with Isomorphic Endomorphism Semigroups

    Mat. Zametki, 97:4 (2015),  556–565
  12. Homogeneous mappings of Abelian groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 2,  61–68
  13. Abelian groups with UA-ring of endomorphisms and their homogeneous mappings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 4(30),  49–56
  14. Torsion-Free Abelian Groups of Finite Rank as Endomorphic Modules over Their Endomorphism Ring

    Mat. Zametki, 94:5 (2013),  770–776
  15. Abelian Groups as $\mathrm{UA}$-Modules over Their Endomorphism Ring

    Mat. Zametki, 91:6 (2012),  934–941
  16. Endoprimal Abelian groups and modules

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 3(19),  31–34
  17. A generalization of the full transitivity property for torsion-free Abelian groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 2(18),  52–55
  18. On torsion-free Abelian groups with $UA$-rings of endomorphisms

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 2(14),  55–58
  19. Endomorphic indecomposable torsion-free Abelian groups of rank 3

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 1(13),  61–66
  20. Abelian Groups as $\mathrm{UA}$-Modules over the Ring $\mathbb Z$

    Mat. Zametki, 87:3 (2010),  412–416
  21. Definability of Abelian Groups by the Center of their Endomorphism Ring

    Mat. Zametki, 84:6 (2008),  952–954
  22. Abelian groups as endomorphic modules over their endomorphism ring

    Fundam. Prikl. Mat., 13:1 (2007),  229–233


© Steklov Math. Inst. of RAS, 2025