|
|
Publications in Math-Net.Ru
-
Isomorphisms of semigroups of endomorphisms of mixed Abelian groups
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 7, 54–60
-
Affine Near-Rings and Related Structures
Mat. Zametki, 103:6 (2018), 936–947
-
On the Determinability of Mixed Abelian Groups by Their Endomorphism Semigroups
Mat. Zametki, 103:3 (2018), 364–371
-
On homogeneous mappings of mixed modules
Chebyshevskii Sb., 18:2 (2017), 256–266
-
On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings
Fundam. Prikl. Mat., 21:1 (2016), 217–224
-
$UA$-properties of modules over commutative Noetherian rings
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 11, 42–52
-
On homogeneous mappings of finitely presented modules over the ring of polyadic numbers
Fundam. Prikl. Mat., 20:6 (2015), 229–235
-
On the theory of near-vector spaces
Fundam. Prikl. Mat., 20:5 (2015), 197–202
-
Separable torsion-free modules with $UA$-rings of endomorphisms
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 6, 53–59
-
Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms
Mat. Zametki, 98:6 (2015), 898–906
-
Mixed Abelian Groups with Isomorphic Endomorphism Semigroups
Mat. Zametki, 97:4 (2015), 556–565
-
Homogeneous mappings of Abelian groups
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 2, 61–68
-
Abelian groups with UA-ring of endomorphisms and their homogeneous mappings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 4(30), 49–56
-
Torsion-Free Abelian Groups of Finite Rank as Endomorphic Modules over Their Endomorphism Ring
Mat. Zametki, 94:5 (2013), 770–776
-
Abelian Groups as $\mathrm{UA}$-Modules over Their Endomorphism Ring
Mat. Zametki, 91:6 (2012), 934–941
-
Endoprimal Abelian groups and modules
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 3(19), 31–34
-
A generalization of the full transitivity property for torsion-free Abelian groups
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 2(18), 52–55
-
On torsion-free Abelian groups with $UA$-rings of endomorphisms
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 2(14), 55–58
-
Endomorphic indecomposable torsion-free Abelian groups of rank 3
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 1(13), 61–66
-
Abelian Groups as $\mathrm{UA}$-Modules over the Ring $\mathbb Z$
Mat. Zametki, 87:3 (2010), 412–416
-
Definability of Abelian Groups by the Center of their Endomorphism Ring
Mat. Zametki, 84:6 (2008), 952–954
-
Abelian groups as endomorphic modules over their endomorphism ring
Fundam. Prikl. Mat., 13:1 (2007), 229–233
© , 2025