RUS  ENG
Full version
PEOPLE

Chupakhin Aleksandr Pavlovich

Publications in Math-Net.Ru

  1. Representations of algebra $sl_2(\mathbb R)$ and ordinary differential equations

    Chelyab. Fiz.-Mat. Zh., 8:2 (2023),  173–189
  2. Mechanics of ski sliding on snow: Current status and prospects

    Prikl. Mekh. Tekh. Fiz., 64:4 (2023),  161–177
  3. Curl equation in viscous hydrodynamics in a channel of complex geometry

    Sib. Zh. Ind. Mat., 26:4 (2023),  5–15
  4. Strength properties of vessels of the abdominal aorta: experimental results and perspectives

    Prikl. Mekh. Tekh. Fiz., 63:2 (2022),  84–93
  5. Constructing a minimal basis of invariants for differential algebra $(2\times2)$ matrix

    Sib. Zh. Ind. Mat., 25:2 (2022),  21–31
  6. Multidimensional Hopf equation and some exact solutions

    Sib. Zh. Ind. Mat., 25:1 (2022),  5–13
  7. Differentiation of Similar Matrices

    Mat. Zametki, 109:2 (2021),  302–306
  8. Method of commutators for integration of a matrix Riccati equation

    Sib. Zh. Ind. Mat., 24:1 (2021),  78–88
  9. Energy approach to the solution of the hydroelastic problem of the growth of a diverticulum of a fusiform aneurysm

    Prikl. Mekh. Tekh. Fiz., 61:5 (2020),  211–223
  10. Automated flow control system in a baseline test rig for studying pulsed fluid flows

    Prikl. Mekh. Tekh. Fiz., 61:4 (2020),  108–113
  11. On integration of a matrix Riccati equation

    Sib. Zh. Ind. Mat., 23:4 (2020),  101–113
  12. Numerical study of the hydrodynamics of the T-graft in the model problem of optimizing the angle of low-flow vascular anastomosis

    Prikl. Mekh. Tekh. Fiz., 60:6 (2019),  72–80
  13. On the energy of a hydroelastic system: blood flow in an artery with cerebral aneurysm

    Prikl. Mekh. Tekh. Fiz., 60:6 (2019),  3–16
  14. Analysis of stability of the boundary layer on a flat plate under a finite-thickness two-layer compliant coating

    Prikl. Mekh. Tekh. Fiz., 60:4 (2019),  35–46
  15. Ovsyannikov vortex in relativistic hydrodynamics

    Prikl. Mekh. Tekh. Fiz., 60:2 (2019),  5–18
  16. Basic test rig for studying oscillating fluid flows

    Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  211–215
  17. On the impact of flow-diverters on the hemodynamics of human cerebral aneurysms

    Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  5–14
  18. Monitoring of hemodynamics of brain vessels

    Prikl. Mekh. Tekh. Fiz., 58:5 (2017),  7–16
  19. Measurement of viscous flow velocity and its visualization using two magnetic resonances

    Prikl. Mekh. Tekh. Fiz., 58:2 (2017),  26–31
  20. Numerical simulation of wave motions on a rotating attracting spherical zone

    Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015),  469–487
  21. Traveling waves in a one-dimensional model of hemodynamics

    Prikl. Mekh. Tekh. Fiz., 55:6 (2014),  16–26
  22. Steady vortex flows of a self-gravitating gas

    Prikl. Mekh. Tekh. Fiz., 55:2 (2014),  159–167
  23. On a single class of vortex solutions of nonlinear Schrodinger equation

    Sib. Èlektron. Mat. Izv., 11 (2014),  929–950
  24. Partially invariant solutions in gas dynamics and implicit equations

    Prikl. Mekh. Tekh. Fiz., 53:6 (2012),  11–24
  25. On self-similar Ovsyannikov's vortex

    Trudy Mat. Inst. Steklova, 278 (2012),  276–287
  26. About some solutions of the equation moving continuous medium with spacial thermodynamics

    Sib. Èlektron. Mat. Izv., 8 (2011),  317–332
  27. Stationary Ovsyannikov vortex in the field of large gravitating center

    J. Sib. Fed. Univ. Math. Phys., 3:2 (2010),  228–243
  28. The motion of a binary mixture and viscous liquid in a circular pipe under the action of an unsteady pressure gradient

    J. Sib. Fed. Univ. Math. Phys., 3:2 (2010),  135–145
  29. One Partially Invariant Solution of Hydrodynamic Equations for the Atmosphere

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:4 (2010),  26–35
  30. Numerical Simulation of Shallow Water Flows on the Rotating Attractive Sphere

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010),  30–45
  31. Shallow water equations on a rotating attracting sphere. 2. Simple stationary waves and sound characteristics

    Prikl. Mekh. Tekh. Fiz., 50:3 (2009),  82–96
  32. Two-dimensional gas vortices and twisted gas jets

    Prikl. Mekh. Tekh. Fiz., 50:3 (2009),  71–81
  33. Equations of the shallow water model on a rotating attracting sphere. 1. Derivation and general properties

    Prikl. Mekh. Tekh. Fiz., 50:2 (2009),  24–36
  34. Basis of differential invariants of symmetry group of Green–Naghdi equations

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 2,  52–62
  35. Gas flow from the distributed source in a cross-section magnetic field

    Nelin. Dinam., 4:4 (2008),  443–466
  36. On damping source in model of the shallow water on rotating sphere

    Nelin. Dinam., 4:2 (2008),  133–144
  37. Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry

    Sib. Èlektron. Mat. Izv., 5 (2008),  229–250
  38. Partial invariant solutions of the cubic Schrödinger equation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 3,  35–41
  39. Group theoretical solutions of Schrödinger equation generated by three-dimensional symmetry algebras

    Nelin. Dinam., 3:3 (2007),  349–362
  40. Integration of the equations of gas dynamics for 2.5-dimensional solutions

    Sibirsk. Mat. Zh., 48:1 (2007),  103–115
  41. On a gas source in a constant force field

    Prikl. Mekh. Tekh. Fiz., 47:6 (2006),  3–16
  42. Invariant and partially invariant solutions of the Green–Naghdi equations

    Prikl. Mekh. Tekh. Fiz., 46:6 (2005),  26–35
  43. Three-dimensional analog of Prandtl–Meyer waves

    Prikl. Mekh. Tekh. Fiz., 46:5 (2005),  38–45
  44. Homogeneous singular vortex

    Prikl. Mekh. Tekh. Fiz., 45:2 (2004),  75–89
  45. Self-conjugation of solutions via a shock wave: Limiting shock

    Prikl. Mekh. Tekh. Fiz., 44:3 (2003),  26–40
  46. Hydrodynamics with quadratic pressure. 2. Examples

    Prikl. Mekh. Tekh. Fiz., 43:2 (2002),  22–28
  47. Hydrodynamics with quadratic pressure. 1. General results

    Prikl. Mekh. Tekh. Fiz., 43:1 (2002),  27–35
  48. Regular submodels of types (1,2) and (1,1) of the equations of gas dynamics

    Prikl. Mekh. Tekh. Fiz., 40:2 (1999),  40–49
  49. On barochronic gas motions

    Dokl. Akad. Nauk, 352:5 (1997),  624–626
  50. Nontrivial conformal groups in Riemannian spaces

    Dokl. Akad. Nauk SSSR, 246:5 (1979),  1056–1058


© Steklov Math. Inst. of RAS, 2024