|
|
Publications in Math-Net.Ru
-
Representations of algebra $sl_2(\mathbb R)$ and ordinary differential equations
Chelyab. Fiz.-Mat. Zh., 8:2 (2023), 173–189
-
Mechanics of ski sliding on snow: Current status and prospects
Prikl. Mekh. Tekh. Fiz., 64:4 (2023), 161–177
-
Curl equation in viscous hydrodynamics in a channel of complex geometry
Sib. Zh. Ind. Mat., 26:4 (2023), 5–15
-
Strength properties of vessels of the abdominal aorta: experimental results and perspectives
Prikl. Mekh. Tekh. Fiz., 63:2 (2022), 84–93
-
Constructing a minimal basis of invariants for differential algebra
$(2\times2)$ matrix
Sib. Zh. Ind. Mat., 25:2 (2022), 21–31
-
Multidimensional Hopf equation and some exact solutions
Sib. Zh. Ind. Mat., 25:1 (2022), 5–13
-
Differentiation of Similar Matrices
Mat. Zametki, 109:2 (2021), 302–306
-
Method of commutators for integration of a matrix Riccati equation
Sib. Zh. Ind. Mat., 24:1 (2021), 78–88
-
Energy approach to the solution of the hydroelastic problem of the growth of a diverticulum of a fusiform aneurysm
Prikl. Mekh. Tekh. Fiz., 61:5 (2020), 211–223
-
Automated flow control system in a baseline test rig for studying pulsed fluid flows
Prikl. Mekh. Tekh. Fiz., 61:4 (2020), 108–113
-
On integration of a matrix Riccati equation
Sib. Zh. Ind. Mat., 23:4 (2020), 101–113
-
Numerical study of the hydrodynamics of the T-graft in the model problem of optimizing the angle of low-flow vascular anastomosis
Prikl. Mekh. Tekh. Fiz., 60:6 (2019), 72–80
-
On the energy of a hydroelastic system: blood flow in an artery with cerebral aneurysm
Prikl. Mekh. Tekh. Fiz., 60:6 (2019), 3–16
-
Analysis of stability of the boundary layer on a flat plate under a finite-thickness two-layer compliant coating
Prikl. Mekh. Tekh. Fiz., 60:4 (2019), 35–46
-
Ovsyannikov vortex in relativistic hydrodynamics
Prikl. Mekh. Tekh. Fiz., 60:2 (2019), 5–18
-
Basic test rig for studying oscillating fluid flows
Prikl. Mekh. Tekh. Fiz., 59:6 (2018), 211–215
-
On the impact of flow-diverters on the hemodynamics of human cerebral aneurysms
Prikl. Mekh. Tekh. Fiz., 59:6 (2018), 5–14
-
Monitoring of hemodynamics of brain vessels
Prikl. Mekh. Tekh. Fiz., 58:5 (2017), 7–16
-
Measurement of viscous flow velocity and its visualization using two magnetic resonances
Prikl. Mekh. Tekh. Fiz., 58:2 (2017), 26–31
-
Numerical simulation of wave motions on a rotating attracting spherical zone
Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015), 469–487
-
Traveling waves in a one-dimensional model of hemodynamics
Prikl. Mekh. Tekh. Fiz., 55:6 (2014), 16–26
-
Steady vortex flows of a self-gravitating gas
Prikl. Mekh. Tekh. Fiz., 55:2 (2014), 159–167
-
On a single class of vortex solutions of nonlinear Schrodinger equation
Sib. Èlektron. Mat. Izv., 11 (2014), 929–950
-
Partially invariant solutions in gas dynamics and implicit equations
Prikl. Mekh. Tekh. Fiz., 53:6 (2012), 11–24
-
On self-similar Ovsyannikov's vortex
Trudy Mat. Inst. Steklova, 278 (2012), 276–287
-
About some solutions of the equation moving continuous medium with spacial thermodynamics
Sib. Èlektron. Mat. Izv., 8 (2011), 317–332
-
Stationary Ovsyannikov vortex in the field of large gravitating center
J. Sib. Fed. Univ. Math. Phys., 3:2 (2010), 228–243
-
The motion of a binary mixture and viscous liquid in a circular pipe under the action of an unsteady pressure gradient
J. Sib. Fed. Univ. Math. Phys., 3:2 (2010), 135–145
-
One Partially Invariant Solution of Hydrodynamic Equations for the Atmosphere
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:4 (2010), 26–35
-
Numerical Simulation of Shallow Water Flows on the Rotating Attractive Sphere
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010), 30–45
-
Shallow water equations on a rotating attracting sphere. 2. Simple stationary waves and sound characteristics
Prikl. Mekh. Tekh. Fiz., 50:3 (2009), 82–96
-
Two-dimensional gas vortices and twisted gas jets
Prikl. Mekh. Tekh. Fiz., 50:3 (2009), 71–81
-
Equations of the shallow water model on a rotating attracting sphere. 1. Derivation and general properties
Prikl. Mekh. Tekh. Fiz., 50:2 (2009), 24–36
-
Basis of differential invariants of symmetry group of Green–Naghdi equations
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 2, 52–62
-
Gas flow from the distributed source in a cross-section magnetic field
Nelin. Dinam., 4:4 (2008), 443–466
-
On damping source in model of the shallow water on rotating sphere
Nelin. Dinam., 4:2 (2008), 133–144
-
Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry
Sib. Èlektron. Mat. Izv., 5 (2008), 229–250
-
Partial invariant solutions of the cubic Schrödinger equation
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 3, 35–41
-
Group theoretical solutions of Schrödinger equation generated by three-dimensional symmetry algebras
Nelin. Dinam., 3:3 (2007), 349–362
-
Integration of the equations of gas dynamics for 2.5-dimensional solutions
Sibirsk. Mat. Zh., 48:1 (2007), 103–115
-
On a gas source in a constant force field
Prikl. Mekh. Tekh. Fiz., 47:6 (2006), 3–16
-
Invariant and partially invariant solutions of the Green–Naghdi equations
Prikl. Mekh. Tekh. Fiz., 46:6 (2005), 26–35
-
Three-dimensional analog of Prandtl–Meyer waves
Prikl. Mekh. Tekh. Fiz., 46:5 (2005), 38–45
-
Homogeneous singular vortex
Prikl. Mekh. Tekh. Fiz., 45:2 (2004), 75–89
-
Self-conjugation of solutions via a shock wave: Limiting shock
Prikl. Mekh. Tekh. Fiz., 44:3 (2003), 26–40
-
Hydrodynamics with quadratic pressure. 2. Examples
Prikl. Mekh. Tekh. Fiz., 43:2 (2002), 22–28
-
Hydrodynamics with quadratic pressure. 1. General results
Prikl. Mekh. Tekh. Fiz., 43:1 (2002), 27–35
-
Regular submodels of types (1,2) and (1,1) of the equations of gas dynamics
Prikl. Mekh. Tekh. Fiz., 40:2 (1999), 40–49
-
On barochronic gas motions
Dokl. Akad. Nauk, 352:5 (1997), 624–626
-
Nontrivial conformal groups in Riemannian spaces
Dokl. Akad. Nauk SSSR, 246:5 (1979), 1056–1058
© , 2024