RUS  ENG
Full version
PEOPLE

Sergeev Igor Sergeevich

Publications in Math-Net.Ru

  1. On the Additive Complexity of Some Numerical Sequences

    Mat. Zametki, 115:3 (2024),  408–421
  2. A lower bound on the monotone switching complexity of the threshold function $T_n^{n-1}$

    Diskr. Mat., 35:4 (2023),  126–131
  3. On the multiplicative complexity of polynomials

    Diskr. Mat., 34:3 (2022),  85–89
  4. Formula Complexity of a Linear Function in a $k$-ary Basis

    Mat. Zametki, 109:3 (2021),  419–435
  5. On the upper bound of the complexity of sorting

    Zh. Vychisl. Mat. Mat. Fiz., 61:2 (2021),  345–362
  6. Multiplication

    Chebyshevskii Sb., 21:1 (2020),  101–134
  7. On the complexity of monotone circuits for threshold symmetric Boolean functions

    Diskr. Mat., 32:1 (2020),  81–109
  8. Multilevel representation and complexity of circuits of unbounded fan-in gates

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 3,  42–46
  9. On a relation between the depth and complexity of monotone Boolean formulas

    Diskretn. Anal. Issled. Oper., 26:4 (2019),  108–120
  10. Rectifier circuits of bounded depth

    Diskretn. Anal. Issled. Oper., 25:1 (2018),  120–141
  11. On the complexity of bounded-depth circuits and formulas over the basis of fan-in gates

    Diskr. Mat., 30:2 (2018),  120–137
  12. On the complexity of Fibonacci coding

    Probl. Peredachi Inf., 54:4 (2018),  51–59
  13. On the real complexity of a complex DFT

    Probl. Peredachi Inf., 53:3 (2017),  90–99
  14. Upper bounds for the size and the depth of formulae for MOD-functions

    Diskr. Mat., 28:2 (2016),  108–116
  15. On the Additive Complexity of GCD and LCM Matrices

    Mat. Zametki, 100:2 (2016),  196–211
  16. On the complexity of computing prime tables on the Turing machine

    Prikl. Diskr. Mat., 2016, no. 1(31),  86–91
  17. Complexity and depth of formulas for symmetric Boolean functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3,  53–57
  18. Upper bounds on the formula size of symmetric Boolean functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5,  38–52
  19. On complexity and depth of Boolean circuits for multiplication and inversion over finite fields of characteristic 2

    Diskr. Mat., 25:1 (2013),  3–32
  20. Complexity of computation in finite fields

    Fundam. Prikl. Mat., 17:4 (2012),  95–131
  21. A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials

    Mat. Sb., 203:10 (2012),  33–70
  22. Thin circulant matrixes and lower bounds on complexity of some Boolean operators

    Diskretn. Anal. Issled. Oper., 18:5 (2011),  38–53
  23. Regular estimates for the complexity of polynomial multiplication and truncated Fourier transform

    Prikl. Diskr. Mat., 2011, no. 4(14),  72–88
  24. Minimal parallel prefix circuits

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 5,  48–51
  25. On the complexity of linear Boolean operators with thin matrixes

    Diskretn. Anal. Issled. Oper., 17:3 (2010),  3–18
  26. Fast algorithms for elementary operations on complex power series

    Diskr. Mat., 22:1 (2010),  17–49
  27. The complexity and depth of Boolean circuits for multiplication and inversion in some fields $GF(2^n)$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 4,  3–7
  28. Letter to the Editor

    Diskretn. Anal. Issled. Oper., 15:4 (2008),  92–93
  29. On design of circuits of logarithmic depth for inversion in finite fields

    Diskr. Mat., 20:4 (2008),  8–28
  30. О сложности градиента рациональной функции

    Diskretn. Anal. Issled. Oper., Ser. 1, 14:4 (2007),  57–75
  31. On the construction of schemes for adders of small depth

    Diskretn. Anal. Issled. Oper., Ser. 1, 14:1 (2007),  27–44
  32. On constructing circuits for transforming the polynomial and normal bases of finite fields from one to the other

    Diskr. Mat., 19:3 (2007),  89–101
  33. Inversion in finite fields of characteristic $2$ using logarithmic depth

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 1,  28–33
  34. An application of the method of additive chains to inversion in finite fields

    Diskr. Mat., 18:4 (2006),  56–72

  35. On the meaning of works by V. M. Khrapchenko

    Prikl. Diskr. Mat., 2020, no. 48,  109–124


© Steklov Math. Inst. of RAS, 2025