|
|
Publications in Math-Net.Ru
-
On the Additive Complexity
of Some Numerical Sequences
Mat. Zametki, 115:3 (2024), 408–421
-
A lower bound on the monotone switching complexity of the threshold function $T_n^{n-1}$
Diskr. Mat., 35:4 (2023), 126–131
-
On the multiplicative complexity of polynomials
Diskr. Mat., 34:3 (2022), 85–89
-
Formula Complexity of a Linear Function in a $k$-ary Basis
Mat. Zametki, 109:3 (2021), 419–435
-
On the upper bound of the complexity of sorting
Zh. Vychisl. Mat. Mat. Fiz., 61:2 (2021), 345–362
-
Multiplication
Chebyshevskii Sb., 21:1 (2020), 101–134
-
On the complexity of monotone circuits for threshold symmetric Boolean functions
Diskr. Mat., 32:1 (2020), 81–109
-
Multilevel representation and complexity of circuits of unbounded fan-in gates
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 3, 42–46
-
On a relation between the depth and complexity of monotone Boolean formulas
Diskretn. Anal. Issled. Oper., 26:4 (2019), 108–120
-
Rectifier circuits of bounded depth
Diskretn. Anal. Issled. Oper., 25:1 (2018), 120–141
-
On the complexity of bounded-depth circuits and formulas over the basis of fan-in gates
Diskr. Mat., 30:2 (2018), 120–137
-
On the complexity of Fibonacci coding
Probl. Peredachi Inf., 54:4 (2018), 51–59
-
On the real complexity of a complex DFT
Probl. Peredachi Inf., 53:3 (2017), 90–99
-
Upper bounds for the size and the depth of formulae for MOD-functions
Diskr. Mat., 28:2 (2016), 108–116
-
On the Additive Complexity of GCD and LCM Matrices
Mat. Zametki, 100:2 (2016), 196–211
-
On the complexity of computing prime tables on the Turing machine
Prikl. Diskr. Mat., 2016, no. 1(31), 86–91
-
Complexity and depth of formulas for symmetric Boolean functions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3, 53–57
-
Upper bounds on the formula size of symmetric Boolean functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5, 38–52
-
On complexity and depth of Boolean circuits for multiplication and inversion over finite fields of characteristic 2
Diskr. Mat., 25:1 (2013), 3–32
-
Complexity of computation in finite fields
Fundam. Prikl. Mat., 17:4 (2012), 95–131
-
A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials
Mat. Sb., 203:10 (2012), 33–70
-
Thin circulant matrixes and lower bounds on complexity of some Boolean operators
Diskretn. Anal. Issled. Oper., 18:5 (2011), 38–53
-
Regular estimates for the complexity of polynomial multiplication and truncated Fourier transform
Prikl. Diskr. Mat., 2011, no. 4(14), 72–88
-
Minimal parallel prefix circuits
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 5, 48–51
-
On the complexity of linear Boolean operators with thin matrixes
Diskretn. Anal. Issled. Oper., 17:3 (2010), 3–18
-
Fast algorithms for elementary operations on complex power series
Diskr. Mat., 22:1 (2010), 17–49
-
The complexity and depth of Boolean circuits for multiplication and inversion in some fields $GF(2^n)$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 4, 3–7
-
Letter to the Editor
Diskretn. Anal. Issled. Oper., 15:4 (2008), 92–93
-
On design of circuits of logarithmic depth for inversion in finite fields
Diskr. Mat., 20:4 (2008), 8–28
-
О сложности градиента рациональной функции
Diskretn. Anal. Issled. Oper., Ser. 1, 14:4 (2007), 57–75
-
On the construction of schemes for adders of small depth
Diskretn. Anal. Issled. Oper., Ser. 1, 14:1 (2007), 27–44
-
On constructing circuits for transforming the polynomial and normal bases of finite fields from one to the other
Diskr. Mat., 19:3 (2007), 89–101
-
Inversion in finite fields of characteristic $2$ using logarithmic depth
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 1, 28–33
-
An application of the method of additive chains to inversion in finite fields
Diskr. Mat., 18:4 (2006), 56–72
-
On the meaning of works by V. M. Khrapchenko
Prikl. Diskr. Mat., 2020, no. 48, 109–124
© , 2025