RUS  ENG
Full version
PEOPLE

Pankratova Irina Anatol'evna

Publications in Math-Net.Ru

  1. On the properties of a finite-state generator

    Prikl. Diskr. Mat., 2024, no. 66,  78–85
  2. Cryptanalytic invertibility of three-argument functions

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  44–48
  3. On the construction of invertible vector Boolean functions

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  40–44
  4. Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO

    Prikl. Diskr. Mat., 2023, no. 62,  29–54
  5. Periodic properties of a finite automaton generator

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  141–143
  6. Construction of a substitution on $\mathbb{F}_2^n$ based on a single Boolean function

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  29–31
  7. Constructing vector Boolean functions with non-degenerate coordinate functions

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  30–33
  8. Cryptanalytic invertibility of two-argument functions

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  67–71
  9. Cryptanalysis of an asymmetric cipher on Boolean functions

    Prikl. Diskr. Mat., 2020, no. 50,  42–50
  10. Algorithms for computing cryptographic characteristics of vectorial Boolean functions

    Prikl. Diskr. Mat., 2019, no. 46,  78–87
  11. Properties of components for some classes of vectorial Boolean functions

    Prikl. Diskr. Mat., 2019, no. 44,  5–11
  12. Cryptanalysis of the ACBF encryption system

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  90–93
  13. About the components of some classes of invertible vectorial Boolean functions

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  66–68
  14. Classes of Boolean functions with limited complexity

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  58–60
  15. Mixing properties for some classes of permutations on $\mathbb{F}_2^n$

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  47–50
  16. Cryptanalysis of $2$-cascade finite automata generator with functional key

    Prikl. Diskr. Mat., 2018, no. 42,  48–56
  17. Asymmetric cryptosystems on Boolean functions

    Prikl. Diskr. Mat., 2018, no. 40,  23–33
  18. Public key cryptosystems on Boolean functions

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  54–57
  19. About $2$-cascade finite automata cryptographic generators and their cryptanalysis

    Prikl. Diskr. Mat., 2017, no. 35,  38–47
  20. Properties of coordinate functions for a class of permutations on $\mathbb F_2^n$

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  38–40
  21. To cryptanalysis of $2$-cascade finite automata cryptographic generators

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  41–43
  22. On the invertibility of vector Boolean functions

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  35–37
  23. Cryptographic extension and its implementation for Russian programming language

    Prikl. Diskr. Mat., 2013, no. 3(21),  93–104
  24. Project of hardware implementation of Russian programming language

    Prikl. Diskr. Mat. Suppl., 2013, no. 6,  98–102
  25. Cryptographic extension of Russian programming language

    Prikl. Diskr. Mat. Suppl., 2013, no. 6,  93–98
  26. Sibecrypt'12 review

    Prikl. Diskr. Mat., 2012, no. 4(18),  108–122
  27. Statistical independence of the Boolean function superposition. II

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  14–15
  28. Statistical independence of the Boolean function superposition

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  11–12
  29. Statistical approximation theory for discrete functions with application in cryptanalysis of iterative block ciphers

    Prikl. Diskr. Mat., 2010, no. 3(9),  51–68
  30. Discrete logarithm problem in subgroups of prime order

    Prikl. Diskr. Mat., 2009, no. supplement № 1,  87–90
  31. Realization of functions on semilattices by switching networks

    Prikl. Diskr. Mat., 2009, no. 2(4),  50–55
  32. Conditions for functions on semilattices to be realized by networks with stable behaviour under hazards

    Izv. Saratov Univ. Math. Mech. Inform., 8:1 (2008),  55–58
  33. Conditions for realization of a function on a semilattice over real bases of switching elements

    Diskretn. Anal. Issled. Oper., Ser. 1, 13:3 (2006),  40–61

  34. In memory of Teacher

    Prikl. Diskr. Mat., 2021, no. 51,  5–8
  35. On the Sixth International Olympiad in Cryptography NSUCRYPTO

    Diskretn. Anal. Issled. Oper., 27:4 (2020),  21–57
  36. In memory of Valentina Vladimirovna Bykova

    Prikl. Diskr. Mat., 2019, no. 45,  5
  37. In memory of Mikhail Mikhailovich Glukhov

    Prikl. Diskr. Mat., 2018, no. 42,  5


© Steklov Math. Inst. of RAS, 2025