RUS  ENG
Full version
PEOPLE

Lozhkin Sergei Andreevich

Publications in Math-Net.Ru

  1. On the Depth of a Multiplexer Function with a Small Number of Select Lines

    Mat. Zametki, 115:5 (2024),  741–748
  2. Asymptotically sharp estimates for the area of multiplexers in the cellular circuit model

    Diskr. Mat., 34:4 (2022),  52–68
  3. Refined bounds on Shannon’s function for complexity of circuits of functional elements

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 3,  32–40
  4. On the structure, complexity, and depth of the circuits over the basis $\{ \&, \vee\} $ realizing step Boolean functions

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 162:3 (2020),  335–349
  5. Refined estimates of the decoder complexity in the model of cellular circuits with functional and switching elements

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 162:3 (2020),  322–334
  6. Asymptotically best method for synthesis of Boolean recursive circuits

    Diskr. Mat., 31:1 (2019),  99–110
  7. Synthesis of asymptotically size-optimal Boolean circuits protected from functionality inference

    Mat. Vopr. Kriptogr., 8:2 (2017),  87–96
  8. Fine precision estimation of Boolean formulas' complexity in some bases consisting of gates with direct and iterative inputs

    University proceedings. Volga region. Physical and mathematical sciences, 2015, no. 2,  16–31
  9. On logic algebra formulas' complexity in some complete bases consisting of elements with both direct and iterative inputs

    University proceedings. Volga region. Physical and mathematical sciences, 2015, no. 1,  54–67
  10. Switching activity of Boolean circuits and synthesis of Boolean circuits with asymptotically optimal complexity and linear switching activity

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:3 (2014),  84–97
  11. Complexity of realization of Boolean functions from some classes related to finite grammars by formulas of alternation depth $3$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 3,  14–19
  12. On Multiplexer Function Complexity in the $\pi$-schemes Class

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:2 (2009),  98–106
  13. Synthesis of formulas whose complexity and depth do not exceed the asymptotically best estimates of high degree of accuracy

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 3,  19–25
  14. On minimal $\pi$-circuits of closing contacts for symmetric functions with threshold 2

    Diskr. Mat., 17:4 (2005),  108–110
  15. On the depth of Boolean functions in an arbitrary complete basis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2,  80–83
  16. Complexity of the realization of some systems of Boolean functions by multiterminal switching circuits

    Dokl. Akad. Nauk SSSR, 298:4 (1988),  807–811
  17. On a method for compressing information and on the complexity of the realization of monotone symmetric functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 7,  44–52
  18. Asymptotic behavior of Shannon functions for the delays of schemes of functional elements

    Mat. Zametki, 19:6 (1976),  939–951


© Steklov Math. Inst. of RAS, 2025