|
|
Publications in Math-Net.Ru
-
On the universality of product for classes of linear functions of two variables
Diskr. Mat., 34:1 (2022), 20–22
-
Testing read-once functions in the elementary basis augmented with all weakly read-multiple unate functions
Intelligent systems. Theory and applications, 25:3 (2021), 75–82
-
Universal functions for linear functions depending on two variables
Diskr. Mat., 32:1 (2020), 3–7
-
Lower estimate for the cardinality of the domain of universal functions for the class of linear Boolean functions
Diskr. Mat., 28:4 (2016), 50–57
-
Тестирование схем Кардо малого числа переменных
Intelligent systems. Theory and applications, 20:3 (2016), 37–40
-
On universal functions for the set of linear functions
Diskr. Mat., 24:3 (2012), 62–65
-
Iterated Boolean functions in the elementary basis
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 11, 72–77
-
On the complexity of proving that a Boolean function is not a binary read-once
Prikl. Diskr. Mat., 2011, no. 3(13), 12–16
-
Learning Read-Once Functions Individually
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:2 (2009), 36–44
-
The representability of a Boolean function by a repetition-free formula can be verified by a circuit of linear complexity
Diskr. Mat., 17:4 (2005), 111–115
-
On the length of a checking sequence for repetition-free functions in the basis $\{0,1,\&,\vee,\neg\}$
Diskr. Mat., 17:2 (2005), 139–143
-
On a decomposition method for recognizing membership in invariant classes
Diskr. Mat., 14:4 (2002), 110–116
-
On the number of metric functions of a Boolean cube
Diskr. Mat., 13:4 (2001), 116–121
-
On the growth of the number of discrete Lipschitzian functions when the dimension of the domain increases
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 2, 3–7
-
On some closed classes in partial two-valued logic
Diskr. Mat., 6:4 (1994), 58–79
© , 2024