RUS  ENG
Full version
PEOPLE

Shoitov Aleksandr Mikhailovich

Publications in Math-Net.Ru

  1. On Series of $H$-Equivalent Tuples in Markov Chains

    Trudy Mat. Inst. Steklova, 316 (2022),  270–284
  2. On multiple repetitions of long tuples in a Markov chain

    Mat. Vopr. Kriptogr., 6:3 (2015),  117–133
  3. On repetitions of long tuples in a Markov chain

    Diskr. Mat., 26:3 (2014),  79–89
  4. On the numbers of equivalent tuples sets in a sequence of independent random variables

    Mat. Vopr. Kriptogr., 4:1 (2013),  77–86
  5. Structurally equivalent tuples in the equiprobable polynomial scheme

    Mat. Vopr. Kriptogr., 3:3 (2012),  129–151
  6. About the fact of detecting the noise in finite Markov chain with an unknown transition probability matrix

    Prikl. Diskr. Mat., 2010, no. supplement № 3,  44–45
  7. Asymptotic distributional properties of the number of pairs of metrically close and functionally connected tuples in a polynomial scheme

    Tr. Diskr. Mat., 11:1 (2008),  151–165
  8. The compound Poisson distribution of the number of matches of values of a discrete function of $s$-tuples in segments of a sequence of random variables

    Diskr. Mat., 19:2 (2007),  6–26
  9. Normal approximation in a problem on equivalent tuples

    Tr. Diskr. Mat., 10 (2007),  326–349
  10. Permutationally equivalent repetitions of nonoverlapping tuples in the polynomial scheme

    Tr. Diskr. Mat., 9 (2006),  401–414
  11. The Poisson approximation for the number of matches of values of a discrete function from chains

    Diskr. Mat., 17:2 (2005),  56–69
  12. Limit distributions of random variables characterizing the connection between tuples in a polynomial scheme by means of structural equivalence

    Tr. Diskr. Mat., 8 (2004),  312–326
  13. Structural equivalence of $s$-tuples in random discrete sequences

    Diskr. Mat., 15:4 (2003),  7–34
  14. On a feature of asymptotic distributions of the number of $H$-equivalent $n$-tuples sets in the nonequiprobable polynomial scheme

    Tr. Diskr. Mat., 7 (2003),  227–238
  15. Limit distributions of the number of sets of $H$-equivalent segments in an equiprobable polynomial scheme of arrays

    Diskr. Mat., 14:1 (2002),  82–98
  16. Repetitions of the values of a function of segments of a sequence of independent trials

    Diskr. Mat., 12:3 (2000),  49–59

  17. To the memory of Igor Aleksandrovich Kruglov

    Mat. Vopr. Kriptogr., 11:4 (2020),  5–6


© Steklov Math. Inst. of RAS, 2024