|
|
Publications in Math-Net.Ru
-
Estimating the stability radius of an optimal solution to the simple assembly line balancing problem
Diskretn. Anal. Issled. Oper., 26:2 (2019), 79–97
-
On calculation of the stability radius for a minimum spanning tree
Journal of the Belarusian State University. Mathematics and Informatics, 1 (2017), 34–38
-
Estimates of stability radius of multicriteria Boolean problem with Hölder metrics in parameter spaces
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 2, 74–81
-
A united approach to finding the stability radii in a multicriteria problem of a maximum cut
Diskretn. Anal. Issled. Oper., 22:5 (2015), 30–51
-
Stability analysis of the efficient solution to a vector problem of a maximum cut
Diskretn. Anal. Issled. Oper., 20:4 (2013), 27–35
-
Estimating the stability radius of the vector MAX-CUT problem
Diskr. Mat., 25:2 (2013), 5–12
-
Stability conditions for a multicriteria Boolean problem of minimizing projections of linear functions
Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013), 125–133
-
On stability of Pareto-optimal solution of portfolio optimization problem with Savage's minimax risk criteria
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 3, 35–44
-
On quasistability of the lexicographic minimax combinatorial problem with decomposing variables
Diskretn. Anal. Issled. Oper., 17:3 (2010), 32–45
-
On a measure of quasistability of a certain vector linearly combinatorial Boolean problem
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 5, 8–17
-
On stability of a vector combinatorial problem with MINMIN criteria
Diskr. Mat., 20:4 (2008), 3–7
-
Об одном типе устойчивости векторной комбинаторной задачи размещения
Diskretn. Anal. Issled. Oper., Ser. 2, 14:2 (2007), 32–40
-
A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem
Diskr. Mat., 19:3 (2007), 79–83
-
Measure of stability and quasistability to a vector integer programming problem in the $l_1$ metric
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 1, 39–50
-
Analysis of the sensitivity of an efficient solution of a vector Boolean problem of the minimization of projections of linear functions onto $\mathbb R_+$ and $\mathbb R_-$
Diskretn. Anal. Issled. Oper., Ser. 2, 12:2 (2005), 24–43
-
Measure of quasistability in the metric $l_1$ of a vector combinatorial problem with a parametric optimality principle
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 12, 3–10
-
Stability in the combinatorial vector optimization problems
Avtomat. i Telemekh., 2004, no. 2, 79–92
-
Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric $l_1$
Diskr. Mat., 16:4 (2004), 14–19
-
On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 12, 17–27
© , 2025