RUS  ENG
Full version
PEOPLE

Kuz'min Kirill Genadievich

Publications in Math-Net.Ru

  1. Estimating the stability radius of an optimal solution to the simple assembly line balancing problem

    Diskretn. Anal. Issled. Oper., 26:2 (2019),  79–97
  2. On calculation of the stability radius for a minimum spanning tree

    Journal of the Belarusian State University. Mathematics and Informatics, 1 (2017),  34–38
  3. Estimates of stability radius of multicriteria Boolean problem with Hölder metrics in parameter spaces

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 2,  74–81
  4. A united approach to finding the stability radii in a multicriteria problem of a maximum cut

    Diskretn. Anal. Issled. Oper., 22:5 (2015),  30–51
  5. Stability analysis of the efficient solution to a vector problem of a maximum cut

    Diskretn. Anal. Issled. Oper., 20:4 (2013),  27–35
  6. Estimating the stability radius of the vector MAX-CUT problem

    Diskr. Mat., 25:2 (2013),  5–12
  7. Stability conditions for a multicriteria Boolean problem of minimizing projections of linear functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  125–133
  8. On stability of Pareto-optimal solution of portfolio optimization problem with Savage's minimax risk criteria

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 3,  35–44
  9. On quasistability of the lexicographic minimax combinatorial problem with decomposing variables

    Diskretn. Anal. Issled. Oper., 17:3 (2010),  32–45
  10. On a measure of quasistability of a certain vector linearly combinatorial Boolean problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 5,  8–17
  11. On stability of a vector combinatorial problem with MINMIN criteria

    Diskr. Mat., 20:4 (2008),  3–7
  12. Об одном типе устойчивости векторной комбинаторной задачи размещения

    Diskretn. Anal. Issled. Oper., Ser. 2, 14:2 (2007),  32–40
  13. A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem

    Diskr. Mat., 19:3 (2007),  79–83
  14. Measure of stability and quasistability to a vector integer programming problem in the $l_1$ metric

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 1,  39–50
  15. Analysis of the sensitivity of an efficient solution of a vector Boolean problem of the minimization of projections of linear functions onto $\mathbb R_+$ and $\mathbb R_-$

    Diskretn. Anal. Issled. Oper., Ser. 2, 12:2 (2005),  24–43
  16. Measure of quasistability in the metric $l_1$ of a vector combinatorial problem with a parametric optimality principle

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 12,  3–10
  17. Stability in the combinatorial vector optimization problems

    Avtomat. i Telemekh., 2004, no. 2,  79–92
  18. Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric $l_1$

    Diskr. Mat., 16:4 (2004),  14–19
  19. On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 12,  17–27


© Steklov Math. Inst. of RAS, 2025