RUS  ENG
Full version
PEOPLE

Selezneva Svetlana Nikolaevna

Publications in Math-Net.Ru

  1. Describing the closed class of polynomial functions modulo a power of a prime number by a relation

    Diskr. Mat., 35:4 (2023),  115–125
  2. Deciding multiaffinity of polynomials over a finite field

    Diskr. Mat., 35:2 (2023),  109–124
  3. On complexity of searching for periods of functions given by polynomials over a prime field

    Diskretn. Anal. Issled. Oper., 29:1 (2022),  56–73
  4. On properties of multiaffine predicates on a finite set

    Diskr. Mat., 33:4 (2021),  141–152
  5. Finding periods of Zhegalkin polynomials

    Diskr. Mat., 33:3 (2021),  107–120
  6. Multiaffine polynomials over a finite field

    Diskr. Mat., 32:3 (2020),  85–97
  7. On length of Boolean functions of a small number of variables in the class of pseudo-polynomials

    Bulletin of Irkutsk State University. Series Mathematics, 33 (2020),  96–105
  8. On the chromatic number of graphs with some restriction of vertex degrees

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 162:4 (2020),  387–395
  9. On $m$-junctive predicates on a finite set

    Diskretn. Anal. Issled. Oper., 26:3 (2019),  46–59
  10. Learning of monotone functions with single error correction

    Diskr. Mat., 31:4 (2019),  53–69
  11. On weak positive predicates over a finite set

    Diskr. Mat., 30:3 (2018),  127–140
  12. On bijunctive predicates over a finite set

    Diskr. Mat., 29:4 (2017),  130–142
  13. Upper bound for the length of functions over a finite field in the class of pseudopolynomials

    Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017),  899–904
  14. On the number of functions of $k$-valued logic which are polynomials modulo composite $k$

    Diskr. Mat., 28:2 (2016),  81–91
  15. Complexity of systems of functions of Boolean algebra and systems of functions of three-valued logic in classes of polarized polynomial forms

    Diskr. Mat., 27:1 (2015),  111–122
  16. On the multiplicative complexity of some Boolean functions

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  730–736
  17. Multiplicative complexity of some Boolean functions

    Diskr. Mat., 26:4 (2014),  100–109
  18. On the length of functions of $k$-valued logic in the class of polynomial normal forms modulo $k$

    Diskr. Mat., 26:3 (2014),  3–9
  19. A fast algorithm for the construction of polynomials modulo $k$ for $k$-valued functions for composite $k$

    Diskr. Mat., 23:3 (2011),  3–22
  20. On the complexity of representation of $k$-valued functions by generalised polarised polynomials

    Diskr. Mat., 21:4 (2009),  20–29
  21. Fast Algorithm for Building Polarized Polynomial Coefficients' Vectors of $k$-valued Functions

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:2 (2009),  147–153
  22. On approximation with given accuracy of functions of $k$-valued logic by polynomials

    Diskr. Mat., 20:2 (2008),  32–45
  23. On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable

    Diskr. Mat., 16:2 (2004),  117–120
  24. On the complexity of the representation of functions of many-valued logics by polarized polynomials

    Diskr. Mat., 14:2 (2002),  48–53
  25. On some properties of polynomials over finite fields

    Diskr. Mat., 13:2 (2001),  111–119
  26. A polynomial algorithm for recognizing the membership of a function of $k$-valued logic realized by a polynomial in precomplete classes of self-dual functions

    Diskr. Mat., 10:3 (1998),  64–72
  27. On the complexity of recognizing the completeness of sets of Boolean functions realized by Zhegalkin polynomials

    Diskr. Mat., 9:4 (1997),  24–31


© Steklov Math. Inst. of RAS, 2025