|
|
Publications in Math-Net.Ru
-
On properties of a matroid connected with the construction of bijunctive consequences of Boolean equations systems
Mat. Vopr. Kriptogr., 15:4 (2024), 91–112
-
On a method to construct special type corollaries for systems of Boolean equations
Mat. Vopr. Kriptogr., 14:1 (2023), 115–130
-
Bijunctive Boolean functions, graphs of 2-CNF and their order functions. Estimates of weight of a bijunctive function with a given number of layers
Mat. Vopr. Kriptogr., 12:1 (2021), 83–95
-
Parameters of the maximum likelihood method applied to the solution of systems of twice bijunctive equations with corrupted right-hand sides
Mat. Vopr. Kriptogr., 11:3 (2020), 79–100
-
Two methods of estimation of Boolean bijunctive function weights
Mat. Vopr. Kriptogr., 9:4 (2018), 125–142
-
On the weights of Boolean functions representable by $2$-CNF or $3$-CNF
Mat. Vopr. Kriptogr., 9:1 (2018), 5–26
-
The stabilizers of certain families of Boolean functions of $n$ variables that form a Galois-closed subalgebra of the Schaefer algebra. II
Mat. Vopr. Kriptogr., 8:4 (2017), 135–156
-
Functions without short implicents. Part II: Construction
Diskr. Mat., 27:4 (2015), 120–132
-
Functions without short implicents.Part I: lower estimates of weights
Diskr. Mat., 27:2 (2015), 94–105
-
Stabilizers of some families of Boolean functions constituting Galois-closed subalgebras of the Schaefer algebra
Mat. Vopr. Kriptogr., 6:4 (2015), 99–125
-
Schaefer classes, Post classes and Galois connections
Mat. Vopr. Kriptogr., 6:1 (2015), 81–107
-
On the Boolean functions without upper bijunctive analogues
Mat. Vopr. Kriptogr., 4:1 (2013), 111–128
-
A generalisation of Schaefer's bijunctivity criterion
Diskr. Mat., 24:2 (2012), 92–99
-
Properties of generator systems of universal algebras generated by Boolean bijunctive functions
Mat. Vopr. Kriptogr., 3:2 (2012), 117–130
-
Universal algebras generated by sets of satisfying vectors of bijunctive and $r$-junctive Boolean functions
Mat. Vopr. Kriptogr., 2:3 (2011), 75–98
-
Maximal groups of invariant transformations of multiaffine, bijunctive, weakly positive, and weakly negative Boolean functions
Diskr. Mat., 21:2 (2009), 94–101
-
On the number of bijunctive functions that are invariant under a given permutation
Diskr. Mat., 14:3 (2002), 23–41
-
Some properties of the inertia groups of Boolean bijunctive functions, and an injunctive method for the generation of such functions
Diskr. Mat., 14:2 (2002), 33–47
-
On the properties of functions representable in the form of a 2-CNF
Diskr. Mat., 13:4 (2001), 99–115
-
To the memory of Igor Aleksandrovich Kruglov
Mat. Vopr. Kriptogr., 11:4 (2020), 5–6
© , 2025