RUS  ENG
Full version
PEOPLE

Tarasov Alexey Vyacheslavovich

Publications in Math-Net.Ru

  1. On properties of a matroid connected with the construction of bijunctive consequences of Boolean equations systems

    Mat. Vopr. Kriptogr., 15:4 (2024),  91–112
  2. On a method to construct special type corollaries for systems of Boolean equations

    Mat. Vopr. Kriptogr., 14:1 (2023),  115–130
  3. Bijunctive Boolean functions, graphs of 2-CNF and their order functions. Estimates of weight of a bijunctive function with a given number of layers

    Mat. Vopr. Kriptogr., 12:1 (2021),  83–95
  4. Parameters of the maximum likelihood method applied to the solution of systems of twice bijunctive equations with corrupted right-hand sides

    Mat. Vopr. Kriptogr., 11:3 (2020),  79–100
  5. Two methods of estimation of Boolean bijunctive function weights

    Mat. Vopr. Kriptogr., 9:4 (2018),  125–142
  6. On the weights of Boolean functions representable by $2$-CNF or $3$-CNF

    Mat. Vopr. Kriptogr., 9:1 (2018),  5–26
  7. The stabilizers of certain families of Boolean functions of $n$ variables that form a Galois-closed subalgebra of the Schaefer algebra. II

    Mat. Vopr. Kriptogr., 8:4 (2017),  135–156
  8. Functions without short implicents. Part II: Construction

    Diskr. Mat., 27:4 (2015),  120–132
  9. Functions without short implicents.Part I: lower estimates of weights

    Diskr. Mat., 27:2 (2015),  94–105
  10. Stabilizers of some families of Boolean functions constituting Galois-closed subalgebras of the Schaefer algebra

    Mat. Vopr. Kriptogr., 6:4 (2015),  99–125
  11. Schaefer classes, Post classes and Galois connections

    Mat. Vopr. Kriptogr., 6:1 (2015),  81–107
  12. On the Boolean functions without upper bijunctive analogues

    Mat. Vopr. Kriptogr., 4:1 (2013),  111–128
  13. A generalisation of Schaefer's bijunctivity criterion

    Diskr. Mat., 24:2 (2012),  92–99
  14. Properties of generator systems of universal algebras generated by Boolean bijunctive functions

    Mat. Vopr. Kriptogr., 3:2 (2012),  117–130
  15. Universal algebras generated by sets of satisfying vectors of bijunctive and $r$-junctive Boolean functions

    Mat. Vopr. Kriptogr., 2:3 (2011),  75–98
  16. Maximal groups of invariant transformations of multiaffine, bijunctive, weakly positive, and weakly negative Boolean functions

    Diskr. Mat., 21:2 (2009),  94–101
  17. On the number of bijunctive functions that are invariant under a given permutation

    Diskr. Mat., 14:3 (2002),  23–41
  18. Some properties of the inertia groups of Boolean bijunctive functions, and an injunctive method for the generation of such functions

    Diskr. Mat., 14:2 (2002),  33–47
  19. On the properties of functions representable in the form of a 2-CNF

    Diskr. Mat., 13:4 (2001),  99–115

  20. To the memory of Igor Aleksandrovich Kruglov

    Mat. Vopr. Kriptogr., 11:4 (2020),  5–6


© Steklov Math. Inst. of RAS, 2025