|
|
Publications in Math-Net.Ru
-
Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection
Izvestiya VUZ. Applied Nonlinear Dynamics, 32:6 (2024), 897–907
-
Sensitivity and Chaoticity of Some Classes of Semigroup Actions
Regul. Chaotic Dyn., 29:1 (2024), 174–189
-
Chaos in topological foliations
CMFD, 68:3 (2022), 424–450
-
Chaotic topological foliations
Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 8, 81–86
-
The structure of foliations with integrable Ehresmann connection
Ufimsk. Mat. Zh., 14:1 (2022), 23–40
-
Complete Lorentzian foliations of codimension 2 on closed manifolds
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 203 (2021), 17–38
-
The structure of Lorentzian foliations of codimension two
Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 11, 87–92
-
Essential isometry groups of noncompact two-dimensional flat lorenzian orbifolds
University proceedings. Volga region. Physical and mathematical sciences, 2019, no. 1, 14–28
-
Graphs of totally geodesic foliations on pseudo-Riemannian manifolds
Ufimsk. Mat. Zh., 11:3 (2019), 30–45
-
Riemannian foliations with Ehresmann connection
Zhurnal SVMO, 20:4 (2018), 395–407
-
Influence of stratification on the groups of conformal transformations of pseudo-Riemannian orbifolds
Ufimsk. Mat. Zh., 10:2 (2018), 43–56
-
Transversely analytical lorentzian foliations of codimension two
University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 4, 33–45
-
Foliations of codimension one on a three-dimensional sphere with a countable family of compact attractor leaves
Nelin. Dinam., 13:4 (2017), 579–584
-
Foliated models for orbifolds and their applications
Zhurnal SVMO, 19:4 (2017), 33–44
-
Local and Global Stability of Compact Leaves and Foliations
Zh. Mat. Fiz. Anal. Geom., 9:3 (2013), 400–420
-
Attractors of Foliations with Transversal Parabolic Geometry of Rank One
Mat. Zametki, 93:6 (2013), 944–946
-
Global attractors of complete conformal foliations
Mat. Sb., 203:3 (2012), 79–106
-
Classification of compact Lorentzian $2$-orbifolds with noncompact full isometry groups
Sibirsk. Mat. Zh., 53:6 (2012), 1292–1309
-
Compact leaves of structurally stable foliations
Trudy Mat. Inst. Steklova, 278 (2012), 102–113
-
Attractors and an analog of the Lichnérowicz conjecture for conformal foliations
Sibirsk. Mat. Zh., 52:3 (2011), 555–574
-
Ends of Generic Leaves of Complete Cartan Foliations
Mat. Zametki, 87:2 (2010), 316–320
-
Weil foliations
Nelin. Dinam., 6:1 (2010), 219–231
-
The isometry groups of Riemannian orbifolds
Sibirsk. Mat. Zh., 48:4 (2007), 723–741
-
Minimal Sets of Cartan Foliations
Trudy Mat. Inst. Steklova, 256 (2007), 115–147
-
The Ehresmann connection for foliations with singularities, and the global stability of leaves
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 10, 45–56
-
The automorphism groups of finite type $G$-structures on orbifolds
Sibirsk. Mat. Zh., 44:2 (2003), 263–278
-
Foliations with locally stable leaves
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 7, 21–31
-
The graph of a foliation with an Ehresmann connection and the stability of leaves
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 2, 78–81
-
Foliations that are compatible with systems of differential equations of arbitrary order
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 9, 42–48
-
A criterion for the stability of leaves of Riemannian foliations with singularities
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4, 88–91
-
Global stability of foliations with second-order differential equations on leaves
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 8, 81–84
-
Foliations that are compatible with systems of paths
Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 7, 5–13
-
On minimal sets of Riemannian foliations
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 9, 38–45
-
Global structure of reducible Riemannian manifolds
Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 10, 60–62
-
Fiberings on some classes of Riemannian manifolds
Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 7, 93–96
-
Reducible $k$-sheeted structures
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 1, 144–147
-
Simple bifibrations
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 4, 95–104
-
A category of reducible two-sheeted structures
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 3, 103–105
-
Simple transversal bifibrations
Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 4, 104–113
-
To the 75th anniversary of Vyacheslav Zigmundovich Grines
Zhurnal SVMO, 23:4 (2021), 472–476
© , 2024