|
|
Publications in Math-Net.Ru
-
Difference characteristics of random maps and their compositions
Mat. Vopr. Kriptogr., 15:1 (2024), 5–20
-
Differential-linear distinguishing attacks on block ciphers
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 81–90
-
Matrix of transition probabilities of differentials of 8-round Luby — Rackoff scheme
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 79–81
-
Multidimensional spectral criterion for testing hypotheses on random permutations
Mat. Vopr. Kriptogr., 14:3 (2023), 85–106
-
Distinguishing attack on four rounds of the Luby — Rackoff cipher by differentials of two-block texts
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 32–36
-
Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits
Mat. Vopr. Kriptogr., 13:3 (2022), 55–76
-
Spectral probabilistic and statistical analysis of Markov ciphers
Prikl. Diskr. Mat., 2021, no. 53, 12–31
-
Distinguishing attacks on block ciphers by differentials of two-block texts
Prikl. Diskr. Mat., 2020, no. 48, 43–62
-
Criteria for Markov block ciphers
Prikl. Diskr. Mat., 2018, no. 41, 28–37
-
Spectral criterion for testing hypotheses on random permutations
Mat. Vopr. Kriptogr., 7:3 (2016), 19–28
-
Matrix formula for the spectrum of output distribution of block cipher scheme and statistical criterion based on this formula
Prikl. Diskr. Mat., 2016, no. 2(32), 33–48
-
On the algorithm of detecting the essential arguments of random Boolean function
Mat. Vopr. Kriptogr., 6:3 (2015), 19–32
-
Statistical methods of search for coordinate set on which a random vector has bans
Prikl. Diskr. Mat., 2015, no. 2(28), 5–20
-
Statistical estimation of the significant arguments set of the binary vector-function with corrupted values
Mat. Vopr. Kriptogr., 5:4 (2014), 41–61
-
Binary Codes Formed by Functions with Nontrivial Inertia Groups
Probl. Peredachi Inf., 37:4 (2001), 71–84
-
A local limit theorem for the distribution of a part of the spectrum of a random binary function
Diskr. Mat., 12:1 (2000), 82–95
-
A threshold function with the Shannon effect for Boolean functions with respect to a symmetric group
Diskr. Mat., 5:3 (1993), 64–75
-
An asymptotic formula for the number of correlation-immune Boolean functions of order $k$
Diskr. Mat., 3:2 (1991), 25–46
© , 2024