RUS  ENG
Full version
PEOPLE

Denisov Oleg Viktorovich

Publications in Math-Net.Ru

  1. Difference characteristics of random maps and their compositions

    Mat. Vopr. Kriptogr., 15:1 (2024),  5–20
  2. Differential-linear distinguishing attacks on block ciphers

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  81–90
  3. Matrix of transition probabilities of differentials of 8-round Luby — Rackoff scheme

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  79–81
  4. Multidimensional spectral criterion for testing hypotheses on random permutations

    Mat. Vopr. Kriptogr., 14:3 (2023),  85–106
  5. Distinguishing attack on four rounds of the Luby — Rackoff cipher by differentials of two-block texts

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  32–36
  6. Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits

    Mat. Vopr. Kriptogr., 13:3 (2022),  55–76
  7. Spectral probabilistic and statistical analysis of Markov ciphers

    Prikl. Diskr. Mat., 2021, no. 53,  12–31
  8. Distinguishing attacks on block ciphers by differentials of two-block texts

    Prikl. Diskr. Mat., 2020, no. 48,  43–62
  9. Criteria for Markov block ciphers

    Prikl. Diskr. Mat., 2018, no. 41,  28–37
  10. Spectral criterion for testing hypotheses on random permutations

    Mat. Vopr. Kriptogr., 7:3 (2016),  19–28
  11. Matrix formula for the spectrum of output distribution of block cipher scheme and statistical criterion based on this formula

    Prikl. Diskr. Mat., 2016, no. 2(32),  33–48
  12. On the algorithm of detecting the essential arguments of random Boolean function

    Mat. Vopr. Kriptogr., 6:3 (2015),  19–32
  13. Statistical methods of search for coordinate set on which a random vector has bans

    Prikl. Diskr. Mat., 2015, no. 2(28),  5–20
  14. Statistical estimation of the significant arguments set of the binary vector-function with corrupted values

    Mat. Vopr. Kriptogr., 5:4 (2014),  41–61
  15. Binary Codes Formed by Functions with Nontrivial Inertia Groups

    Probl. Peredachi Inf., 37:4 (2001),  71–84
  16. A local limit theorem for the distribution of a part of the spectrum of a random binary function

    Diskr. Mat., 12:1 (2000),  82–95
  17. A threshold function with the Shannon effect for Boolean functions with respect to a symmetric group

    Diskr. Mat., 5:3 (1993),  64–75
  18. An asymptotic formula for the number of correlation-immune Boolean functions of order $k$

    Diskr. Mat., 3:2 (1991),  25–46


© Steklov Math. Inst. of RAS, 2024