RUS  ENG
Full version
PEOPLE

Shaidurov Vladimir Viktorovich

Publications in Math-Net.Ru

  1. SIRV-D optimal control model for COVID-19 propagation scenarios

    J. Sib. Fed. Univ. Math. Phys., 16:1 (2023),  87–97
  2. Methods for change parallelism in process of high-level VLSI synthesis

    Model. Anal. Inform. Sist., 29:1 (2022),  60–72
  3. A numerical method for analyzing nonlocal data from film thermoresistors of electronic boards

    Sib. Èlektron. Mat. Izv., 14 (2017),  914–926
  4. Probability distribution functions of the sum of squares of random variables in the non-zero mathematical expectations

    J. Sib. Fed. Univ. Math. Phys., 9:2 (2016),  173–179
  5. A semi-Lagrangian method on dynamically adapted grid for two-dimensional advection problem

    Sib. Èlektron. Mat. Izv., 13 (2016),  1219–1228
  6. Recovery of a boundary function from observation data for the surface wave propagation problem in an open basin

    Sib. Zh. Ind. Mat., 16:1 (2013),  10–20
  7. Mathematical model of the movement of the solid core of the Earth

    University proceedings. Volga region. Physical and mathematical sciences, 2011, no. 1,  40–46
  8. Error estimates for triangular and tetrahedral finite elements in combination with a trajectory approximation of the first derivatives for advection-diffusion equations

    Sib. Zh. Vychisl. Mat., 14:4 (2011),  425–442
  9. Application of the trajectory method and the finite element method to the modeling of viscous heat-conductive gas motion

    Num. Meth. Prog., 12:2 (2011),  275–281
  10. OLAP-technology of operative information-analytical support of organizational management

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2010, no. 2,  15–27
  11. Численное сферически-симметричное моделирование глубинной геодинамики

    Sib. Zh. Ind. Mat., 12:1 (2009),  40–48
  12. The Finite Element Method for Modeling Spherically Symmetric Pulsations of the Earth

    J. Sib. Fed. Univ. Math. Phys., 1:3 (2008),  247–256
  13. Convergence of the multigrid cascadic algorithm for second order finite elements in a domain with a smooth boundary

    Sib. Zh. Vychisl. Mat., 11:4 (2008),  361–384
  14. Two multigrid iterative algorithms for a discrete analogue of the biharmonic equation

    Sib. Zh. Vychisl. Mat., 7:3 (2004),  213–228
  15. A cascadic multigrid algorithm in the finite element method for the three-dimensional Dirichlet problem in a curvilinear boundary domain

    Sib. Zh. Vychisl. Mat., 5:2 (2002),  127–147
  16. Justification of asymptotic stability of the triangulation algorithm for a three-dimensional domain

    Sib. Zh. Vychisl. Mat., 3:2 (2000),  123–136
  17. A nonuniform difference scheme with fourth order of accuracy in a domain with smooth boundary

    Sib. Zh. Vychisl. Mat., 1:2 (1998),  99–117
  18. On the numerical solution of an evolution problem with a bounded operator

    Dokl. Akad. Nauk SSSR, 216:1 (1974),  39–41


© Steklov Math. Inst. of RAS, 2024