RUS  ENG
Full version
PEOPLE

Yankovskii Andrei Petrovich

Publications in Math-Net.Ru

  1. Modeling of non-isothermal elastic-plastic behavior of reinforced shallow shells in the framework of a refined bending theory

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:1 (2023),  119–141
  2. Simulation of viscoelastoplastic behavior of shallow shells with account for strain rate of the material

    Prikl. Mekh. Tekh. Fiz., 63:2 (2022),  140–150
  3. A refined model of viscoelastic-plastic deformation of flexible spatially-reinforced cylindrical shells

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021),  343–364
  4. Viscoelastic-plastic deformation of plates with spatial reinforcement structures

    Prikl. Mekh. Tekh. Fiz., 61:1 (2020),  118–132
  5. Modeling of viscoelastoplastic deformation of flexible shallow shells with spatial-reinforcements structures

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020),  506–527
  6. Modeling of elastoplastic behavior of flexible spatially reinforced plates under refined theory of bending

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019),  90–112
  7. Elastic-plastic deformation of flexible plates with spatial frame structures

    Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  112–122
  8. Bending of equally stressed reinforced plates with account for their weakened resistance to the transverse shear

    Prikl. Mekh. Tekh. Fiz., 58:1 (2017),  199–209
  9. Refined model of elastic-plastic behavior of longitudinally reinforced curved wall-beam under dynamic loading

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017),  524–545
  10. The refined model of flexural deformation of longitudinally reinforced metal-composite wall-beams under conditions of steady-state creep

    Matem. Mod., 28:8 (2016),  127–144
  11. A study of steady creep of layered metal-composite beams of laminated-fibrous structures with account of their weakened resistance to the transverse shift

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016),  85–108
  12. Method of additional boundary conditions in the problem of heat transfer for non-Newtonian fluid moving in laminar mode in circular pipe

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:3 (2015),  578–600
  13. Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear. 2. Analysis of calculated results

    Prikl. Mekh. Tekh. Fiz., 55:4 (2014),  174–183
  14. Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear. 1. Deformation model

    Prikl. Mekh. Tekh. Fiz., 55:3 (2014),  154–163
  15. The uniqueness of solution in the small sense of tasks of equally-stressed reinforcement of composite metal plates in conditions of steady-state creep

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014),  121–132
  16. Asymptotic Analysis of Solutions of a Nonlinear Problem of Unsteady Heat Conduction of Layered Anisotropic Inhomogeneous Shells Under Boundary conditions of the First Kind on the Front Surfaces

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014),  168–185
  17. Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(31) (2013),  17–35
  18. Modeling of steady creep of 3D reinforced metal-composits with anisotropy of phase materials

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012),  92–109
  19. On some properties of equal-stress problem solution reinforcement bending the metal-composite plates working in steady creep conditions

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  62–73
  20. The steady creeping difficultly reinforced the metal-composit plates loaded in the plane

    Matem. Mod., 22:8 (2010),  55–66
  21. Equal-Stress Reinforcement the Ring Bending Metal-Composites Plates Working in Conditions of Steady Creep

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  42–54
  22. Calculation of Steady Creepage of Metal-Composit Flat Shells of Layer-Fibrous Structure

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(20) (2010),  71–83
  23. Построение определяющих уравнений установившейся ползучести легких ребристых заполнителей

    Matem. Mod. Kraev. Zadachi, 1 (2009),  163–173
  24. Application of methods of the theory of perturbations in flat problem of equally-stressed reinforcing of metal-composite plates at steady creep

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(19) (2009),  53–71
  25. The steady creep layer-fibrous bendings metal-composites plates

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008),  66–76
  26. Equal-stess reinforcing momentless metal-composites shells fibers of the constant cross-section, acting in conditions of the steady-state creep

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(16) (2008),  23–32
  27. Viscoplastic dynamics of isotropic plates of variable thickness under explosive loading

    Prikl. Mekh. Tekh. Fiz., 48:2 (2007),  123–134
  28. Asymptotic analysis of the problem of nonstationary heat conduction of layered anisotropic inhomogeneous plates under boundary conditions of the first and second kind

    Sib. Zh. Ind. Mat., 10:4 (2007),  83–94
  29. Equal-stressed reinforcement of metal-composite plates by the principal stress directions at steady-state creep

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(15) (2007),  41–50
  30. Generalization of the Runge–Kutta methods and their application tointegration of initial-boundary value problems of mathematical physics

    Sib. Zh. Vychisl. Mat., 8:1 (2005),  57–76
  31. Elastic-plastic dynamic bending of fiber-laminated plates under burst-type loading

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 30 (2004),  22–40
  32. Effect of temperature sensitivity and inelastic behavior of phase materials on the bearing capacity of plane structures with uniformly stressed reinforcement

    Prikl. Mekh. Tekh. Fiz., 44:3 (2003),  136–147
  33. Design of plane thermoelastic composite constructions with uniformly stressed reinforcement

    Prikl. Mekh. Tekh. Fiz., 42:2 (2001),  213–223
  34. The effect of the reinforcement structure on the heat conductivity of shells of revolution with a system of tubes filled with a liquid heat-transfer agent

    Prikl. Mekh. Tekh. Fiz., 41:4 (2000),  168–177
  35. Mathematical simulation of heat conductivity processes in capillary constructions with heat-conducting fluid

    Sib. Zh. Ind. Mat., 2:1 (1999),  94–107


© Steklov Math. Inst. of RAS, 2024