RUS  ENG
Full version
PEOPLE

Khisamutdinov Al'fred Ibragimovich

Publications in Math-Net.Ru

  1. On mathematical modeling of pulsed neutron-gamma log problems

    Matem. Mod., 26:6 (2014),  100–118
  2. On reduction of computational cost of imitation Monte Carlo algorithms for modeling rarefied gas flows

    Matem. Mod., 23:9 (2011),  65–88
  3. Statistical simulation of one type of pairs of random variables with the use of fictitious jumps

    Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  162–173
  4. On two methods for reducing the complexity of Monte Carlo algorithms with continuous time for the Boltzmann equation

    Sib. Zh. Ind. Mat., 2:1 (1999),  185–195
  5. The nonlinear Boltzmann equation, methods with “continuous time”, and some general constructions of Monte Carlo methods

    Sibirsk. Mat. Zh., 39:2 (1998),  456–473
  6. The algorithms of the continuous time Monte Carlo

    Matem. Mod., 6:2 (1994),  47–60
  7. Algorithms with fictitious collisions of the Monte Carlo method with continuous time for the Boltzmann equation

    Dokl. Akad. Nauk, 328:6 (1993),  662–665
  8. “Non-symmetric” interactions in Monte Carlo methods with continuous time and approximation of Boltzmann equation

    Matem. Mod., 4:2 (1992),  110–119
  9. Nonsimulation estimates in Monte Carlo methods

    Zh. Vychisl. Mat. Mat. Fiz., 32:1 (1992),  115–122
  10. Algorithms with “different time coordinates” of Monte Carlo methods for a nonlinear “smoothed” Boltzmann equation

    Dokl. Akad. Nauk SSSR, 316:4 (1991),  829–833
  11. Activation logging on $\mathrm{O}$, $\mathrm{Si}$ and $\mathrm{Al}$ and the definition of fluid type in quartzite-feldspar reservoir

    Dokl. Akad. Nauk SSSR, 309:3 (1989),  587–590
  12. Choosing the “Russian roulette and splitting” parameters for Monte Carlo computation of radiation transfer

    Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989),  286–293
  13. Simulation statistical modeling of the kinetic equation of rarefied gases

    Dokl. Akad. Nauk SSSR, 302:1 (1988),  75–79
  14. A simulation method for statistical modeling of rarefied gases

    Dokl. Akad. Nauk SSSR, 291:6 (1986),  1300–1304
  15. The Monte Carlo method with additional random sampling for calculating the flow of particles “at a point”

    Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985),  1155–1163
  16. Calculation by Monte Carlo methods of derivatives of linear flow functionals with respect to the parameters of surface

    Zh. Vychisl. Mat. Mat. Fiz., 21:3 (1981),  787–790
  17. Unbiased random estimates of iterations of an integral operator with power nonlinearity

    Zh. Vychisl. Mat. Mat. Fiz., 21:2 (1981),  363–370
  18. Majorizability of the “collision” estimate

    Dokl. Akad. Nauk SSSR, 241:1 (1978),  37–39
  19. Importance sampling and the simple Monte Carlo method in the calculation of the sum of a Neumann series

    Zh. Vychisl. Mat. Mat. Fiz., 17:3 (1977),  585–590
  20. A bounded variance estimator for computing by the Monte Carlo method the flux of particles at a point

    Zh. Vychisl. Mat. Mat. Fiz., 16:5 (1976),  1252–1263
  21. Estimates with minimal absolute moments for the calculation by the Monte Carlo method of the sum of a Neumann series

    Dokl. Akad. Nauk SSSR, 212:2 (1973),  308–311
  22. A type of “single” class estimators

    Zh. Vychisl. Mat. Mat. Fiz., 13:3 (1973),  770–775
  23. Behaviour of the variance in the measurement of the distribution of the mean free path

    Zh. Vychisl. Mat. Mat. Fiz., 12:1 (1972),  257–262
  24. On the decrease of the dispersion of a probability estimate by the Monte Carlo method

    Zh. Vychisl. Mat. Mat. Fiz., 10:6 (1970),  1547–1549
  25. A single class of estimators for the Monte Carlo calculation of functionals of the solution of an integral equation of the second kind

    Zh. Vychisl. Mat. Mat. Fiz., 10:5 (1970),  1269–1280
  26. Importance sampling in transport theory

    Zh. Vychisl. Mat. Mat. Fiz., 10:4 (1970),  999–1005
  27. Estimation of functionals of the solution of the conjugate radiative transfer equation by the Monte Carlo method

    Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968),  467–471
  28. Effectiveness of the method of mathematical expectations for a certain class of problems

    Zh. Vychisl. Mat. Mat. Fiz., 7:4 (1967),  946–953


© Steklov Math. Inst. of RAS, 2024