|
|
Publications in Math-Net.Ru
-
On mathematical modeling of pulsed neutron-gamma log problems
Matem. Mod., 26:6 (2014), 100–118
-
On reduction of computational cost of imitation Monte Carlo algorithms for modeling rarefied gas flows
Matem. Mod., 23:9 (2011), 65–88
-
Statistical simulation of one type of pairs of random variables with the use of fictitious jumps
Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007), 162–173
-
On two methods for reducing the complexity of Monte Carlo algorithms with continuous time for the Boltzmann equation
Sib. Zh. Ind. Mat., 2:1 (1999), 185–195
-
The nonlinear Boltzmann equation, methods with “continuous time”, and some general constructions of Monte Carlo methods
Sibirsk. Mat. Zh., 39:2 (1998), 456–473
-
The algorithms of the continuous time Monte Carlo
Matem. Mod., 6:2 (1994), 47–60
-
Algorithms with fictitious collisions of the Monte Carlo method with continuous time for the Boltzmann equation
Dokl. Akad. Nauk, 328:6 (1993), 662–665
-
“Non-symmetric” interactions in Monte Carlo methods with continuous time and approximation of Boltzmann equation
Matem. Mod., 4:2 (1992), 110–119
-
Nonsimulation estimates in Monte Carlo methods
Zh. Vychisl. Mat. Mat. Fiz., 32:1 (1992), 115–122
-
Algorithms with “different time coordinates” of Monte Carlo
methods for a nonlinear “smoothed” Boltzmann equation
Dokl. Akad. Nauk SSSR, 316:4 (1991), 829–833
-
Activation logging on $\mathrm{O}$, $\mathrm{Si}$ and $\mathrm{Al}$ and the definition of fluid type in quartzite-feldspar reservoir
Dokl. Akad. Nauk SSSR, 309:3 (1989), 587–590
-
Choosing the “Russian roulette and splitting” parameters for Monte Carlo computation of radiation transfer
Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989), 286–293
-
Simulation statistical modeling of the kinetic equation of
rarefied gases
Dokl. Akad. Nauk SSSR, 302:1 (1988), 75–79
-
A simulation method for statistical modeling of rarefied gases
Dokl. Akad. Nauk SSSR, 291:6 (1986), 1300–1304
-
The Monte Carlo method with additional random sampling for calculating the flow of particles “at a point”
Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985), 1155–1163
-
Calculation by Monte Carlo methods of derivatives of linear flow functionals with respect to the parameters of surface
Zh. Vychisl. Mat. Mat. Fiz., 21:3 (1981), 787–790
-
Unbiased random estimates of iterations of an integral operator with power nonlinearity
Zh. Vychisl. Mat. Mat. Fiz., 21:2 (1981), 363–370
-
Majorizability of the “collision” estimate
Dokl. Akad. Nauk SSSR, 241:1 (1978), 37–39
-
Importance sampling and the simple Monte Carlo method in the calculation of the sum of a Neumann series
Zh. Vychisl. Mat. Mat. Fiz., 17:3 (1977), 585–590
-
A bounded variance estimator for computing by the Monte Carlo method the flux of particles at a point
Zh. Vychisl. Mat. Mat. Fiz., 16:5 (1976), 1252–1263
-
Estimates with minimal absolute moments for the calculation by the Monte Carlo method of the sum of a Neumann series
Dokl. Akad. Nauk SSSR, 212:2 (1973), 308–311
-
A type of “single” class estimators
Zh. Vychisl. Mat. Mat. Fiz., 13:3 (1973), 770–775
-
Behaviour of the variance in the measurement of the distribution of the mean free path
Zh. Vychisl. Mat. Mat. Fiz., 12:1 (1972), 257–262
-
On the decrease of the dispersion of a probability estimate by the Monte Carlo method
Zh. Vychisl. Mat. Mat. Fiz., 10:6 (1970), 1547–1549
-
A single class of estimators for the Monte Carlo calculation of functionals of the solution of an integral equation of the second kind
Zh. Vychisl. Mat. Mat. Fiz., 10:5 (1970), 1269–1280
-
Importance sampling in transport theory
Zh. Vychisl. Mat. Mat. Fiz., 10:4 (1970), 999–1005
-
Estimation of functionals of the solution of the conjugate radiative transfer equation by the Monte Carlo method
Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968), 467–471
-
Effectiveness of the method of mathematical expectations for a certain class of problems
Zh. Vychisl. Mat. Mat. Fiz., 7:4 (1967), 946–953
© , 2024