RUS  ENG
Full version
PEOPLE

Kazhikhov Aleksandr Vasil'evich

Publications in Math-Net.Ru

  1. Existence of a global solution to one model problem of atmosphere dynamics

    Sibirsk. Mat. Zh., 46:5 (2005),  1011–1020
  2. On a class of convex functions and exact classes of wellposedness of the Cauchy problem for the transport equation in Orlicz spaces

    Sibirsk. Mat. Zh., 39:4 (1998),  831–850
  3. Stability “in the large” of an initial-boundary value problem for equations of the potential flows of a compressible viscous fluid at low Reynolds numbers

    Dokl. Akad. Nauk, 340:4 (1995),  460–462
  4. On existence of global solutions to the two-dimensional Navier–Stokes equations for a compressible viscous fluid

    Sibirsk. Mat. Zh., 36:6 (1995),  1283–1316
  5. Global solutions of equations of potential flows of a compressible viscous fluid for small Reynolds numbers

    Differ. Uravn., 30:6 (1994),  1010–1022
  6. The equation of potential flows of a compressible viscous fluid at small reynolds numbers: Existence, uniqueness, and stabilization of solutions

    Sibirsk. Mat. Zh., 34:3 (1993),  70–80
  7. An approach to the boundary value problems for equations of composite type

    Sibirsk. Mat. Zh., 33:6 (1992),  47–53
  8. Initial-boundary value problems for the Euler equations of an ideal incompressible fluid

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 5,  13–19
  9. On the Cauchy problem for the equations of a viscous gas

    Sibirsk. Mat. Zh., 23:1 (1982),  60–64
  10. Nonstationary problems of ideal-fluid penetration through a bounded region

    Dokl. Akad. Nauk SSSR, 250:6 (1980),  1344–1347
  11. On a problem of flow for an ideal fluid

    Zap. Nauchn. Sem. LOMI, 96 (1980),  84–96
  12. On the theory of the Navier–Stokes equations of a viscous gas with nonmonotone state function

    Dokl. Akad. Nauk SSSR, 246:5 (1979),  1045–1047
  13. Stabilization of solutions of the initial-boundary value problem for barotropic viscous fluid equations

    Differ. Uravn., 15:4 (1979),  662–667
  14. The correctness of boundary-value problems in a diffusion model of an inhomogeneous liquid

    Dokl. Akad. Nauk SSSR, 234:2 (1977),  330–332
  15. Solvability of theinitial and boundary-value problem for the equations of motions of an inhomogeneous viscous incompressible fluid

    Dokl. Akad. Nauk SSSR, 216:5 (1974),  1008–1010
  16. Existence of a unique solution of the fundamental boundary-value problem in the linear theory of oceanic circulation

    Dokl. Akad. Nauk SSSR, 198:4 (1971),  801–804


© Steklov Math. Inst. of RAS, 2024