RUS  ENG
Full version
PEOPLE

Sazhenkov Sergey Alexandrovich

Publications in Math-Net.Ru

  1. Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  935–948
  2. The one-dimensional impulsive Barenblatt–Zheltov–Kochina equation with a transition layer

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  724–740
  3. Regularity and approximation of the solution of a one-sided problemfor the Barenblatt-Zheltov-Kochina pseudoparabolic operator

    Mathematical notes of NEFU, 29:1 (2022),  69–87
  4. Studying the model of air and water filtration in a melting or freezing snowpack

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:2 (2022),  5–16
  5. Numerical analysis of a one-dimensional model of a melting-freezing snowpack

    J. Comp. Eng. Math., 8:4 (2021),  17–27
  6. Multiscale analysis of a model problem of a thermoelastic body with thin inclusions

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  282–318
  7. A shock layer arising as the source term collapses in the $p(\boldsymbol{x})$-Laplacian equation

    Probl. Anal. Issues Anal., 9(27):3 (2020),  31–53
  8. Homogenization of a Submerged Two-Level Bristle Structure for Modeling in Biotechnology

    Sib. Èlektron. Mat. Izv., 17 (2020),  1359–1450
  9. Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint

    Sib. Èlektron. Mat. Izv., 16 (2019),  236–248
  10. Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations

    Sib. Èlektron. Mat. Izv., 15 (2018),  1158–1173
  11. Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior

    Sib. Èlektron. Mat. Izv., 11 (2014),  26–51
  12. Kinetic equation method for problems of viscous gas dynamics with rapidly oscillating density distributions

    Trudy Mat. Inst. Steklova, 281 (2013),  68–83
  13. Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure

    Sib. Èlektron. Mat. Izv., 8 (2011),  127–158
  14. An effective model of the dynamics of a barotropic gas with fast oscillating initial data

    Sib. Zh. Ind. Mat., 14:3 (2011),  100–111
  15. Studying the Darcy–Stefan problem on phase transition in a saturated porous soil

    Prikl. Mekh. Tekh. Fiz., 49:4 (2008),  81–93
  16. Entropy solutions to the Verigin ultraparabolic problem

    Sibirsk. Mat. Zh., 49:2 (2008),  449–463
  17. Effective Thermoviscoelasticity of a Saturated Porous Ground

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:2 (2008),  105–129
  18. The genuinely nonlinear Graetz–Nusselt ultraparabolic equation

    Sibirsk. Mat. Zh., 47:2 (2006),  431–454
  19. Generalized Lagrangian Coordinates and the Uniqueness of the Solution of a Linear Transport Equation

    Differ. Uravn., 38:1 (2002),  117–125
  20. The Tartar equation for homogenization of a model of the dynamics of fine-dispersion mixtures

    Sibirsk. Mat. Zh., 42:6 (2001),  1375–1390
  21. The problem of the motion of rigid bodies in a non-Newtonian incompressible fluid

    Sibirsk. Mat. Zh., 39:1 (1998),  146–160


© Steklov Math. Inst. of RAS, 2024