RUS  ENG
Full version
PEOPLE

Zhurtov Archil Khazeshovich

Publications in Math-Net.Ru

  1. Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group

    Algebra Logika, 62:1 (2023),  71–75
  2. A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups

    Algebra Logika, 61:4 (2022),  424–442
  3. Finite groups whose maximal subgroups have only soluble proper subgroups

    Sib. Èlektron. Mat. Izv., 19:1 (2022),  237–240
  4. Primary cosets in groups

    Algebra Logika, 59:3 (2020),  315–322
  5. Finite groups close to Frobenius groups

    Sibirsk. Mat. Zh., 60:5 (2019),  1035–1040
  6. Exceptional pseudogeometric graphs with eigenvalue r

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  68–72
  7. On infinite Frobenius groups

    Vladikavkaz. Mat. Zh., 20:2 (2018),  80–85
  8. On groups isospectral to the automorphism group of the second sporadic group of Janko

    Sib. Èlektron. Mat. Izv., 14 (2017),  1011–1016
  9. Automorphisms of a distance-regular graph with intersection array $\{75,64,18,1;1,6,64,75\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  128–135
  10. On locally finite $\pi$-separable groups

    Vladikavkaz. Mat. Zh., 17:2 (2015),  16–21
  11. On periodic groups acting freely on abelian groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  136–143
  12. Finite groups with independent abelian subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  88–91
  13. On automorphisms of 4-isoregular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  78–87
  14. On finite groups with independent subgroups

    Vladikavkaz. Mat. Zh., 12:4 (2010),  15–20
  15. Локальная конечность некоторых групп с заданными порядками элементов

    Vladikavkaz. Mat. Zh., 11:4 (2009),  11–15
  16. Frobenius Groups Generated by Quadratic Elements

    Algebra Logika, 42:3 (2003),  271–292
  17. On a group acting locally freely on an abelian group

    Sibirsk. Mat. Zh., 44:2 (2003),  343–346
  18. Frobenius groups generated by two elements of order 3

    Sibirsk. Mat. Zh., 42:3 (2001),  533–537
  19. On quadratic automorphisms of abelian groups

    Algebra Logika, 39:3 (2000),  320–328
  20. Regular automorphisms of order 3 and Frobenius pairs

    Sibirsk. Mat. Zh., 41:2 (2000),  329–338
  21. On Frobenius groups that contain an element of order $3$

    Vladikavkaz. Mat. Zh., 2:2 (2000),  19–25
  22. On the recognition of the finite simple groups $L_2(2^m)$ in the class of all groups

    Sibirsk. Mat. Zh., 40:1 (1999),  75–78
  23. On Shmidt groups

    Sibirsk. Mat. Zh., 28:2 (1987),  74–78

  24. Koibaev Vladimir Amurkhanovich (on his 60th birthday)

    Vladikavkaz. Mat. Zh., 17:2 (2015),  68–70
  25. Mazurov Viktor Danilovich (on the occasion of his 70th anniversary)

    Vladikavkaz. Mat. Zh., 15:1 (2013),  88–89
  26. Letter to the Editor

    Vladikavkaz. Mat. Zh., 13:2 (2011),  69


© Steklov Math. Inst. of RAS, 2025