|
|
Publications in Math-Net.Ru
-
Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group
Algebra Logika, 62:1 (2023), 71–75
-
A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups
Algebra Logika, 61:4 (2022), 424–442
-
Finite groups whose maximal subgroups have only soluble proper subgroups
Sib. Èlektron. Mat. Izv., 19:1 (2022), 237–240
-
Primary cosets in groups
Algebra Logika, 59:3 (2020), 315–322
-
Finite groups close to Frobenius groups
Sibirsk. Mat. Zh., 60:5 (2019), 1035–1040
-
Exceptional pseudogeometric graphs with eigenvalue r
Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 68–72
-
On infinite Frobenius groups
Vladikavkaz. Mat. Zh., 20:2 (2018), 80–85
-
On groups isospectral to the automorphism group of the second sporadic group of Janko
Sib. Èlektron. Mat. Izv., 14 (2017), 1011–1016
-
Automorphisms of a distance-regular graph with intersection array $\{75,64,18,1;1,6,64,75\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017), 128–135
-
On locally finite $\pi$-separable groups
Vladikavkaz. Mat. Zh., 17:2 (2015), 16–21
-
On periodic groups acting freely on abelian groups
Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013), 136–143
-
Finite groups with independent abelian subgroups
Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 88–91
-
On automorphisms of 4-isoregular graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 78–87
-
On finite groups with independent subgroups
Vladikavkaz. Mat. Zh., 12:4 (2010), 15–20
-
Локальная конечность некоторых групп с заданными порядками элементов
Vladikavkaz. Mat. Zh., 11:4 (2009), 11–15
-
Frobenius Groups Generated by Quadratic Elements
Algebra Logika, 42:3 (2003), 271–292
-
On a group acting locally freely on an abelian group
Sibirsk. Mat. Zh., 44:2 (2003), 343–346
-
Frobenius groups generated by two elements of order 3
Sibirsk. Mat. Zh., 42:3 (2001), 533–537
-
On quadratic automorphisms of abelian groups
Algebra Logika, 39:3 (2000), 320–328
-
Regular automorphisms of order 3 and Frobenius pairs
Sibirsk. Mat. Zh., 41:2 (2000), 329–338
-
On Frobenius groups that contain an element of order $3$
Vladikavkaz. Mat. Zh., 2:2 (2000), 19–25
-
On the recognition of the finite simple groups $L_2(2^m)$ in the class of all groups
Sibirsk. Mat. Zh., 40:1 (1999), 75–78
-
On Shmidt groups
Sibirsk. Mat. Zh., 28:2 (1987), 74–78
-
Koibaev Vladimir Amurkhanovich (on his 60th birthday)
Vladikavkaz. Mat. Zh., 17:2 (2015), 68–70
-
Mazurov Viktor Danilovich (on the occasion of his 70th anniversary)
Vladikavkaz. Mat. Zh., 15:1 (2013), 88–89
-
Letter to the Editor
Vladikavkaz. Mat. Zh., 13:2 (2011), 69
© , 2025