RUS  ENG
Full version
PEOPLE

Gudimenko Aleksei Ivanovich

Publications in Math-Net.Ru

  1. Spectral problem for a harmonic chain with dissipation at the boundaries

    Mat. Zametki, 116:4 (2024),  600–613
  2. On the Phenomenon of Low-Frequency, Large-Amplitude Oscillations in a High-Dimensional Linear Dynamical System

    Rus. J. Nonlin. Dyn., 20:2 (2024),  259–276
  3. The problem of vibrations in a harmonic chain with damping and anti-damping on the boundaries

    Dal'nevost. Mat. Zh., 23:2 (2023),  161–177
  4. Inverse spectral problem for an antisymmetric tridiagonal matrix

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  1026–1036
  5. Covariant hydrodynamics of Hamiltonian systems

    Dal'nevost. Mat. Zh., 21:2 (2021),  166–179
  6. Heat flow in a harmonic chain due to an impulse disturbance

    Dal'nevost. Mat. Zh., 20:1 (2020),  52–57
  7. Heat flow in a one-dimensional semi-infinite harmonic lattice with an absorbing boundary

    Dal'nevost. Mat. Zh., 20:1 (2020),  38–51
  8. Protein synthesis as an object of physical and mathematical research and modeling

    Sib. Èlektron. Mat. Izv., 16 (2019),  340–368
  9. Geometric formulations of the balance laws of continuum mechanics

    Dal'nevost. Mat. Zh., 18:2 (2018),  150–176
  10. Harmonic oscillator chains with exactly solvable dynamics

    Dal'nevost. Mat. Zh., 17:1 (2017),  11–21
  11. On applicability of category theory to the description of ontogeny events

    Dal'nevost. Mat. Zh., 16:2 (2016),  147–159
  12. On covariant form of the momentum balance equation for perfect fluid

    Dal'nevost. Mat. Zh., 15:1 (2015),  41–52
  13. Geometrical aspects of the mass conservation law

    Dal'nevost. Mat. Zh., 14:2 (2014),  173–190
  14. On invariant form of the mass conservation law

    Dal'nevost. Mat. Zh., 14:1 (2014),  33–40
  15. A study of relative equilibria of three vortices

    Dal'nevost. Mat. Zh., 10:2 (2010),  106–116
  16. Qualitative analysis of relative motion of three vortices

    Nelin. Dinam., 6:2 (2010),  307–326
  17. Three-vortex motion with zero total circulation

    Prikl. Mekh. Tekh. Fiz., 51:3 (2010),  55–65
  18. Motion of three point vortices under the condition that one of them passes through the vorticity center

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 2,  37–51
  19. Dynamics of perturbed singular configuration of three point vortices

    Nelin. Dinam., 4:4 (2008),  429–441
  20. Dynamics of Perturbed Equilateral and Collinear Ņonfigurations of Three Point Vortices

    Regul. Chaotic Dyn., 13:2 (2008),  85–95
  21. Dynamics of perturbed equilateral and collinear configurations of three point vortices

    Nelin. Dinam., 3:4 (2007),  379–391
  22. Chaos and resonances in a rotating flow disturbed by ā periodic motion of a point vortex

    Nelin. Dinam., 3:1 (2007),  33–48
  23. A new approach to studying the dynamics of a thin curved vortex

    Prikl. Mekh. Tekh. Fiz., 43:1 (2002),  36–44
  24. Set-valued and epi-standardizations and their connections with convergences of the same name

    Sibirsk. Mat. Zh., 38:1 (1997),  78–89


© Steklov Math. Inst. of RAS, 2025