RUS  ENG
Full version
PEOPLE

Rudoy Evgeny Mikhailovich

Publications in Math-Net.Ru

  1. Equilibrium problem for a Kirchhoff–Love plate contacting by the side edge and the bottom boundary

    J. Sib. Fed. Univ. Math. Phys., 17:3 (2024),  355–364
  2. Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  935–948
  3. Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem

    Sib. Zh. Ind. Mat., 24:1 (2021),  103–119
  4. Asymptotic modelling of bonded plates by a soft thin adhesive layer

    Sib. Èlektron. Mat. Izv., 17 (2020),  615–625
  5. Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks

    Mathematical notes of NEFU, 25:3 (2018),  43–53
  6. Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion

    Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018),  790–805
  7. Numerical simulation of the equilibrium of an elastic two-layer structure with a crack

    Sib. Zh. Vychisl. Mat., 20:1 (2017),  77–90
  8. Domain decomposition method for a membrane with a delaminated thin rigid inclusion

    Sib. Èlektron. Mat. Izv., 13 (2016),  395–410
  9. Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion

    Sib. Zh. Ind. Mat., 19:2 (2016),  74–87
  10. Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions

    Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016),  455–464
  11. Domain decomposition method for a model crack problem with a possible contact of crack edges

    Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015),  310–321
  12. Shape Sensitivity Analysis of an Equilibrium Problem for a Body with a Thin Rigid Inclusion

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:2 (2014),  69–87
  13. Invariant integrals in the plane elasticity problem for bodies with rigid inclusions and cracks

    Sib. Zh. Ind. Mat., 15:1 (2012),  99–109
  14. Shape sensitivity analysis of the energy integrals for the bodies with rigid inclusions and cracks under nonpenetration condition

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012),  108–122
  15. Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack

    Prikl. Mekh. Tekh. Fiz., 52:2 (2011),  114–127
  16. Формула гриффитса и интеграл Черепанова-Райса для пластины с жестким включением и трещиной

    Matem. Mod. Kraev. Zadachi, 1 (2010),  304
  17. Griffith's Formula and Cherepanov–Rice's Integral for a Plate with a Rigid Inclusion and a Crack

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:2 (2010),  98–117
  18. Задача о криволинейной трещине на границе жесткого включения в упругом теле: асимптотика функционала энергии

    Matem. Mod. Kraev. Zadachi, 1 (2009),  231–232
  19. Односторонний контакт пластины с тонким упругим препятствием

    Sib. Zh. Ind. Mat., 12:2 (2009),  120–130
  20. Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut

    Sibirsk. Mat. Zh., 50:2 (2009),  430–445
  21. Асимптотика функционала энергии пластины с трещиной с возможным контактом берегов

    Matem. Mod. Kraev. Zadachi, 1 (2008),  261–262
  22. Differentiation of energy functionals in the problem of a curvilinear crack in a plate with a possible contact of the crack faces

    Prikl. Mekh. Tekh. Fiz., 49:5 (2008),  153–168
  23. A choice of an optimal form of surface cracks in 3D solids

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:2 (2006),  76–87
  24. Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks

    Sib. Zh. Ind. Mat., 8:1 (2005),  106–116
  25. Differentiation of energy functionals in two-dimensional elasticity theory for solids with curvilinear cracks

    Prikl. Mekh. Tekh. Fiz., 45:6 (2004),  83–94
  26. Invariant integrals for the equilibrium problem for a plate with a crack

    Sibirsk. Mat. Zh., 45:2 (2004),  466–477
  27. The Griffiths formula for a plate with a crack

    Sib. Zh. Ind. Mat., 5:3 (2002),  155–161
  28. Stability of a solution of the equilibrium problem for a shallow shell with a crack under perturbation of the boundary

    Sib. Zh. Ind. Mat., 4:1 (2001),  171–176


© Steklov Math. Inst. of RAS, 2025