|
|
Publications in Math-Net.Ru
-
Equilibrium problem for a Kirchhoff–Love plate contacting by the side edge and the bottom boundary
J. Sib. Fed. Univ. Math. Phys., 17:3 (2024), 355–364
-
Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
Sib. Èlektron. Mat. Izv., 19:2 (2022), 935–948
-
Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem
Sib. Zh. Ind. Mat., 24:1 (2021), 103–119
-
Asymptotic modelling of bonded plates by a soft thin adhesive layer
Sib. Èlektron. Mat. Izv., 17 (2020), 615–625
-
Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks
Mathematical notes of NEFU, 25:3 (2018), 43–53
-
Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion
Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018), 790–805
-
Numerical simulation of the equilibrium of an elastic two-layer structure with a crack
Sib. Zh. Vychisl. Mat., 20:1 (2017), 77–90
-
Domain decomposition method for a membrane with a delaminated thin rigid inclusion
Sib. Èlektron. Mat. Izv., 13 (2016), 395–410
-
Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion
Sib. Zh. Ind. Mat., 19:2 (2016), 74–87
-
Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions
Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016), 455–464
-
Domain decomposition method for a model crack problem with a possible contact of crack edges
Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015), 310–321
-
Shape Sensitivity Analysis of an Equilibrium Problem for a Body with a Thin Rigid Inclusion
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:2 (2014), 69–87
-
Invariant integrals in the plane elasticity problem for bodies with rigid inclusions and cracks
Sib. Zh. Ind. Mat., 15:1 (2012), 99–109
-
Shape sensitivity analysis of the energy integrals for the bodies with rigid inclusions and cracks under nonpenetration condition
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012), 108–122
-
Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack
Prikl. Mekh. Tekh. Fiz., 52:2 (2011), 114–127
-
Формула гриффитса и интеграл Черепанова-Райса для пластины с жестким включением и трещиной
Matem. Mod. Kraev. Zadachi, 1 (2010), 304
-
Griffith's Formula and Cherepanov–Rice's Integral for a Plate with a Rigid Inclusion and a Crack
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:2 (2010), 98–117
-
Задача о криволинейной трещине на границе жесткого включения в упругом теле: асимптотика функционала энергии
Matem. Mod. Kraev. Zadachi, 1 (2009), 231–232
-
Односторонний контакт пластины с тонким упругим препятствием
Sib. Zh. Ind. Mat., 12:2 (2009), 120–130
-
Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut
Sibirsk. Mat. Zh., 50:2 (2009), 430–445
-
Асимптотика функционала энергии пластины с трещиной с возможным контактом берегов
Matem. Mod. Kraev. Zadachi, 1 (2008), 261–262
-
Differentiation of energy functionals in the problem of a curvilinear crack in a plate with a possible contact of the crack faces
Prikl. Mekh. Tekh. Fiz., 49:5 (2008), 153–168
-
A choice of an optimal form of surface cracks in 3D solids
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:2 (2006), 76–87
-
Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks
Sib. Zh. Ind. Mat., 8:1 (2005), 106–116
-
Differentiation of energy functionals in two-dimensional elasticity theory for solids with curvilinear cracks
Prikl. Mekh. Tekh. Fiz., 45:6 (2004), 83–94
-
Invariant integrals for the equilibrium problem for a plate with a crack
Sibirsk. Mat. Zh., 45:2 (2004), 466–477
-
The Griffiths formula for a plate with a crack
Sib. Zh. Ind. Mat., 5:3 (2002), 155–161
-
Stability of a solution of the equilibrium problem for a shallow shell with a crack under perturbation of the boundary
Sib. Zh. Ind. Mat., 4:1 (2001), 171–176
© , 2025