RUS  ENG
Full version
PEOPLE

Kravtsova Ol'ga Vadimovna

Publications in Math-Net.Ru

  1. Questions of the structure of finite Hall quasifields

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024),  128–141
  2. Linear autotopism subgroups of semifield projective planes

    J. Sib. Fed. Univ. Math. Phys., 16:6 (2023),  705–719
  3. 2-elements in an autotopism group of a semifield projective plane

    Bulletin of Irkutsk State University. Series Mathematics, 39 (2022),  96–110
  4. Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order

    J. Sib. Fed. Univ. Math. Phys., 15:3 (2022),  378–384
  5. The spread set method for the construction of finite quasifields

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  164–181
  6. Semifield planes admitting the quaternion group $Q_8$

    Algebra Logika, 59:1 (2020),  101–115
  7. Elementary abelian $2$-subgroups in an autotopism group of a semifield projective plane

    Bulletin of Irkutsk State University. Series Mathematics, 32 (2020),  49–63
  8. Minimal proper quasifields with additional conditions

    J. Sib. Fed. Univ. Math. Phys., 13:1 (2020),  104–113
  9. On alternating subgroup $A_5$ in autotopism group of finite semifield plane

    Sib. Èlektron. Mat. Izv., 17 (2020),  47–50
  10. On some $3$-primitive projective planes

    Chebyshevskii Sb., 20:3 (2019),  316–332
  11. Semifield planes of rank 2 admitting the group $S_3$

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  118–128
  12. Questions of the structure of finite near-fields

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  107–117
  13. $KT$-fields and sharply triply transitive groups

    Algebra Logika, 57:2 (2018),  232–242
  14. Minimal polynomials in finite semifields

    J. Sib. Fed. Univ. Math. Phys., 11:5 (2018),  588–596
  15. A semifield plane of odd order admitting an autotopism subgroup isomorphic to $A_5$

    Sibirsk. Mat. Zh., 59:2 (2018),  396–411
  16. Semifield planes of odd order that admit the autotopism subgroup isomorphic to $A_4$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 9,  10–25
  17. On automorphisms of semifields and semifield planes

    Sib. Èlektron. Mat. Izv., 13 (2016),  1300–1313
  18. Semifield planes of even order that admit the baer involution

    Bulletin of Irkutsk State University. Series Mathematics, 6:2 (2013),  26–37
  19. Some results on isomorphisms of finite semifield planes

    J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  33–39
  20. On collineation subgroup of semifield plane that isomorphic to $A_4$

    J. Sib. Fed. Univ. Math. Phys., 4:4 (2011),  498–504
  21. A semifield plane of rank 2 admitting nonlinear Baire involution

    Fundam. Prikl. Mat., 6:1 (2000),  163–170
  22. On semifield planes of order $16^2$

    Sibirsk. Mat. Zh., 37:3 (1996),  616–623


© Steklov Math. Inst. of RAS, 2024