|
|
Publications in Math-Net.Ru
-
Questions of the structure of finite Hall quasifields
Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024), 128–141
-
Linear autotopism subgroups of semifield projective planes
J. Sib. Fed. Univ. Math. Phys., 16:6 (2023), 705–719
-
2-elements in an autotopism group of a semifield projective plane
Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 96–110
-
Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order
J. Sib. Fed. Univ. Math. Phys., 15:3 (2022), 378–384
-
The spread set method for the construction of finite quasifields
Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022), 164–181
-
Semifield planes admitting the quaternion group $Q_8$
Algebra Logika, 59:1 (2020), 101–115
-
Elementary abelian $2$-subgroups in an autotopism group of a semifield projective plane
Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 49–63
-
Minimal proper quasifields with additional conditions
J. Sib. Fed. Univ. Math. Phys., 13:1 (2020), 104–113
-
On alternating subgroup $A_5$ in autotopism group of finite semifield plane
Sib. Èlektron. Mat. Izv., 17 (2020), 47–50
-
On some $3$-primitive projective planes
Chebyshevskii Sb., 20:3 (2019), 316–332
-
Semifield planes of rank 2 admitting the group $S_3$
Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 118–128
-
Questions of the structure of finite near-fields
Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 107–117
-
$KT$-fields and sharply triply transitive groups
Algebra Logika, 57:2 (2018), 232–242
-
Minimal polynomials in finite semifields
J. Sib. Fed. Univ. Math. Phys., 11:5 (2018), 588–596
-
A semifield plane of odd order admitting an autotopism subgroup isomorphic to $A_5$
Sibirsk. Mat. Zh., 59:2 (2018), 396–411
-
Semifield planes of odd order that admit the autotopism subgroup isomorphic to $A_4$
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 9, 10–25
-
On automorphisms of semifields and semifield planes
Sib. Èlektron. Mat. Izv., 13 (2016), 1300–1313
-
Semifield planes of even order that admit the baer involution
Bulletin of Irkutsk State University. Series Mathematics, 6:2 (2013), 26–37
-
Some results on isomorphisms of finite semifield planes
J. Sib. Fed. Univ. Math. Phys., 6:1 (2013), 33–39
-
On collineation subgroup of semifield plane that isomorphic to $A_4$
J. Sib. Fed. Univ. Math. Phys., 4:4 (2011), 498–504
-
A semifield plane of rank 2 admitting nonlinear Baire involution
Fundam. Prikl. Mat., 6:1 (2000), 163–170
-
On semifield planes of order $16^2$
Sibirsk. Mat. Zh., 37:3 (1996), 616–623
© , 2024