RUS  ENG
Full version
PEOPLE

Andreev Viktor Konstantinovich

Publications in Math-Net.Ru

  1. Thermocapillary convection of immiscible liquid in a three-dimensional layer at low Marangoni numbers

    J. Sib. Fed. Univ. Math. Phys., 17:2 (2024),  195–206
  2. Properties of the solution of the inverse adjoint boundary-value problem of thermal convection in a tube

    Prikl. Mekh. Tekh. Fiz., 65:5 (2024),  13–27
  3. The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers

    Sib. Zh. Ind. Mat., 27:2 (2024),  5–19
  4. A priori and a posteriori estimates for solving one evolutionary inverse problem

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 166:1 (2024),  5–21
  5. Solution of the inverse problem describing slow thermal convection in a rotating layer

    Bulletin of Irkutsk State University. Series Mathematics, 44 (2023),  3–18
  6. Comparative analysis of the analytical and numerical solution of the problem of thermocapillary convection in a rectangular channel

    J. Sib. Fed. Univ. Math. Phys., 16:1 (2023),  48–55
  7. Initial boundary value problem on the motion of a viscous heat-conducting liquid in a vertical pipe

    J. Sib. Fed. Univ. Math. Phys., 16:1 (2023),  5–16
  8. Solution of the linear problem of thermal convection in liquid rotating layer

    J. Sib. Fed. Univ. Math. Phys., 15:3 (2022),  273–280
  9. On a spectral problem for convection equations

    J. Sib. Fed. Univ. Math. Phys., 15:1 (2022),  88–100
  10. Two-layer stationary creeping thermocapillary flow in a three-dimensional channel

    Prikl. Mekh. Tekh. Fiz., 63:1 (2022),  97–104
  11. The heat convection in a rotating tube

    Sib. Zh. Ind. Mat., 25:2 (2022),  5–20
  12. Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface

    J. Sib. Fed. Univ. Math. Phys., 14:4 (2021),  507–518
  13. Inverse problem for source function in parabolic equation at Neumann boundary conditions

    J. Sib. Fed. Univ. Math. Phys., 14:4 (2021),  445–451
  14. Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet

    J. Sib. Fed. Univ. Math. Phys., 14:2 (2021),  204–212
  15. On a creeping 3D convective motion of fluids with an isothermal interface

    J. Sib. Fed. Univ. Math. Phys., 13:6 (2020),  661–669
  16. Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small Marangoni numbers

    J. Sib. Fed. Univ. Math. Phys., 13:2 (2020),  197–212
  17. On the asymptotic behavior of the conjugate problem describing a creeping axisymmetric thermocapillary motion

    J. Sib. Fed. Univ. Math. Phys., 13:1 (2020),  26–36
  18. Two-dimensional stationary thermocapillary flow of two liquids in a plane channel

    Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020),  864–872
  19. A priori estimates of the conjugate problem describing an axisymmetric thermocapillary motion for small Marangoni number

    J. Sib. Fed. Univ. Math. Phys., 12:4 (2019),  483–495
  20. Symmetry analysis of ideal fluid equations in terms of trajectories and Weber's potential

    J. Sib. Fed. Univ. Math. Phys., 12:2 (2019),  133–144
  21. Stability of nonlinear oscillations of a spherical layer of an ideal fluid

    Prikl. Mekh. Tekh. Fiz., 60:2 (2019),  137–147
  22. On the conditions for existence of unidirectional motions of binary mixtures in the Oberbeck–Boussinesq model

    Sib. Zh. Ind. Mat., 22:2 (2019),  3–12
  23. A priori estimates of the adjoint problem describing the slow flow of a binary mixture and a fluid in a channel

    J. Sib. Fed. Univ. Math. Phys., 11:4 (2018),  482–493
  24. The motion of a binary mixture with a cylindrical free boundary at small Marangoni numbers

    J. Sib. Fed. Univ. Math. Phys., 11:2 (2018),  194–205
  25. Properties of solutions for the problem of a joint slow motion of a liquid and a binary mixture in a two-dimensional channel

    Sib. Zh. Ind. Mat., 21:3 (2018),  3–17
  26. On the solution properties of boundary problem simulating thermocapillary flow

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  31–40
  27. Influence of the interfacial internal energy on the thermocapillary steady flow

    J. Sib. Fed. Univ. Math. Phys., 10:4 (2017),  537–547
  28. 2D thermocapillary motion of three fluids in a flat channel

    J. Sib. Fed. Univ. Math. Phys., 9:4 (2016),  404–415
  29. A joint creeping motion of three fluids in a flat layer: a priori estimates and convergence to a stationary regime

    Sib. Zh. Ind. Mat., 19:1 (2016),  3–17
  30. On the solution of an inverse problem simulating two-dimensional motion of a viscous fluid

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016),  5–16
  31. Unsteady 2D motions a viscous fluid described by partially invariant solutions to the Navier–Stokes equations

    J. Sib. Fed. Univ. Math. Phys., 8:2 (2015),  140–147
  32. The 2D motion of perfect fluid with a free surface

    J. Sib. Fed. Univ. Math. Phys., 8:1 (2015),  3–6
  33. On thermocapillary instability of a liquid column with a co-axial gas flow

    J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  3–17
  34. Stability of non-isothermal fluids (Review)

    Prikl. Mekh. Tekh. Fiz., 54:2 (2013),  3–20
  35. The estimates of solutions of adjoint heat problem in spherical area

    J. Sib. Fed. Univ. Math. Phys., 5:4 (2012),  485–496
  36. On small perturbations of thermocapillary stationary two-layer flow in plane layer with movable boundary

    J. Sib. Fed. Univ. Math. Phys., 4:4 (2011),  434–444
  37. On motion of a flooded jet of binary mixture in a viscous fluid

    J. Sib. Fed. Univ. Math. Phys., 4:3 (2011),  308–319
  38. On a convective flow of a binary mixture in a vertical flume

    Sib. Zh. Ind. Mat., 14:1 (2011),  17–26
  39. Thermocapillary motion of two viscous liquids in a cylindrical pipe

    J. Sib. Fed. Univ. Math. Phys., 3:4 (2010),  461–474
  40. The motion of a binary mixture and viscous liquid in a circular pipe under the action of an unsteady pressure gradient

    J. Sib. Fed. Univ. Math. Phys., 3:2 (2010),  135–145
  41. Joint unidirectional motion of two viscous heat-conducting fluids in a tube

    Prikl. Mekh. Tekh. Fiz., 51:4 (2010),  57–71
  42. On Inequalities of the Friedrichs type for Combined Domains

    J. Sib. Fed. Univ. Math. Phys., 2:2 (2009),  146–157
  43. The Joint Motion of Two Binary Mixtures in a Flat Layer

    J. Sib. Fed. Univ. Math. Phys., 1:4 (2008),  349–370
  44. Evolution of the joint motion of two viscous heat-conducting fluids in a plane layer under the action of an unsteady pressure gradient

    Prikl. Mekh. Tekh. Fiz., 49:4 (2008),  94–107
  45. Convective instability of a system of horizontal layers of slightly compressible liquids

    Prikl. Mekh. Tekh. Fiz., 48:4 (2007),  15–22
  46. Self-similar motion of binary mixtures with a plane interface

    Sib. Zh. Ind. Mat., 10:1 (2007),  17–24
  47. On properties of solution of a boundary value problem describing simultaneous flow of two binary mixtures

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:4 (2007),  14–26
  48. Integration of the Equations of an Axisymmetric Typhoon Eye Model

    Differ. Uravn., 41:5 (2005),  706–709
  49. Symmetry Classification and Exact Solutions of the Thermal Diffusion Equations

    Differ. Uravn., 41:4 (2005),  508–517
  50. Origination of microconvection in a flat layer with a free boundary

    Prikl. Mekh. Tekh. Fiz., 45:1 (2004),  29–38
  51. Stability of the equilibrium of a flat layer in a microconvection model

    Prikl. Mekh. Tekh. Fiz., 43:2 (2002),  43–53
  52. Unsteady motion of a gas jet with a linear velocity field

    Sib. Zh. Ind. Mat., 5:2 (2002),  23–35
  53. Invariant submodels of rank two for equations of a nonhomogeneous heavy fluid

    Differ. Uravn., 34:8 (1998),  1082–1091
  54. Stability of Couette flow of an ideal fluid with free boundaries

    Prikl. Mekh. Tekh. Fiz., 39:5 (1998),  99–105
  55. On the stability of viscous liquid spherical layer

    Mat. Model., 7:1 (1995),  93–109
  56. Instability in the tension of a cylindrical layer of fluid

    Prikl. Mekh. Tekh. Fiz., 33:4 (1992),  100–107
  57. Development of thermocapillary convection in a fluid cylinder and cylindrical and plane layers under the influence of internal heat sources

    Prikl. Mekh. Tekh. Fiz., 30:2 (1989),  101–108
  58. Group analysis of equations of plane flows of an ideal fluid in Lagrangian coordinates

    Dokl. Akad. Nauk SSSR, 298:6 (1988),  1358–1361
  59. Group classification and exact solutions of equations of plane and rotational-symmetric flow of an ideal fluid in Lagrangian coordinates

    Differ. Uravn., 24:9 (1988),  1577–1586
  60. Stability of unsteady motion of a viscous fluid band

    Prikl. Mekh. Tekh. Fiz., 26:2 (1985),  93–99
  61. Small perturbations of a spherical fluid layer

    Prikl. Mekh. Tekh. Fiz., 22:1 (1981),  110–117
  62. Nonsteady flow of a compressible fluid with a free boundary

    Dokl. Akad. Nauk SSSR, 244:5 (1979),  1107–1110
  63. Motion of a finite mass of fluid

    Prikl. Mekh. Tekh. Fiz., 20:2 (1979),  25–43
  64. Stability of a nonstationary round jet of an ideal incompressible fluid

    Prikl. Mekh. Tekh. Fiz., 13:4 (1972),  80–84


© Steklov Math. Inst. of RAS, 2025