RUS  ENG
Full version
PEOPLE

Papin Alexandr Alexeevich

Publications in Math-Net.Ru

  1. Modeling the movement of a soluble impurity in melting snow

    Prikl. Mekh. Tekh. Fiz., 65:1 (2024),  58–69
  2. Filtration of two immiscible incompressible fluids

    Sib. Zh. Ind. Mat., 27:2 (2024),  20–33
  3. Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 90,  140–151
  4. Mathematical model of fluids motion in poroelastic snow-ice cover

    J. Sib. Fed. Univ. Math. Phys., 14:1 (2021),  47–56
  5. Heat and mass transfer in melting snow

    Prikl. Mekh. Tekh. Fiz., 62:1 (2021),  109–118
  6. On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1397–1422
  7. Filtration of liquid in a non-isothermal viscous porous medium

    J. Sib. Fed. Univ. Math. Phys., 13:6 (2020),  763–773
  8. Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium

    Sib. Zh. Ind. Mat., 22:2 (2019),  81–93
  9. Uniqueness of a solution of an ice plate oscillation problem in a channel

    J. Sib. Fed. Univ. Math. Phys., 11:4 (2018),  449–458
  10. On local solvability of the system of the equations of one dimensional motion of magma

    J. Sib. Fed. Univ. Math. Phys., 10:3 (2017),  385–395
  11. On the Uniqueness of the Solution of the Flow Problem with a Given Vortex

    Mat. Zametki, 96:6 (2014),  820–826
  12. Solvability of the Boundary-Value Problem for Equations of One-Dimensional Motion of a Two-Phase Mixture

    Mat. Zametki, 96:2 (2014),  170–185
  13. The Dynamic of Melt Snow-Ice Cover

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:4 (2012),  107–113
  14. On the Uniqueness of the Solutions of an Initial Boundary-Value Problem for the System of a Heat-Conducting Two-Phase Mixture

    Mat. Zametki, 87:4 (2010),  636–640
  15. Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture

    Mat. Zametki, 87:2 (2010),  246–261
  16. О локальной разрешимости краевой задачи тепловой двухфазной фильтрации

    Sib. Zh. Ind. Mat., 12:1 (2009),  114–126
  17. Solvability of boundary problem for filtration of two interpenetrated viscous incompressible fluids in porous medium

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009),  80–87
  18. Solvabilitity of a model problem of heat and mass transfer in thawing snow

    Prikl. Mekh. Tekh. Fiz., 49:4 (2008),  13–23
  19. Existence of a solution “in the large” of equations of the one-dimensional nonisothermal motion of a two-phase mixture. II. Results on solvability

    Sib. Zh. Ind. Mat., 9:3 (2006),  111–123
  20. Existence of a solution “in the large” of equations of the one-dimensional nonisothermal motion of a two-phase mixture. I. Formulation of the problem and auxiliary statements

    Sib. Zh. Ind. Mat., 9:2 (2006),  116–136
  21. Example of an exact solution of the problem of the distribution of an ionized impurity in the surface region of a semiconductor

    Prikl. Mekh. Tekh. Fiz., 39:4 (1998),  17–24
  22. Approximation methods of solving problems of two-phase filtration

    Dokl. Akad. Nauk SSSR, 247:3 (1979),  521–525


© Steklov Math. Inst. of RAS, 2024