|
|
Publications in Math-Net.Ru
-
Finite groups without elements of order 10: the case of solvable or almost simple groups
Sibirsk. Mat. Zh., 65:4 (2024), 636–644
-
On Some arithmetic applications to the theory of symmetric groups
Chebyshevskii Sb., 24:4 (2023), 252–263
-
One corollary of description of finite groups without elements of order $6$
Sib. Èlektron. Mat. Izv., 20:2 (2023), 854–858
-
On Graphs in Which the Neighborhoods of Vertices Are Edge-Regular Graphs without 3-Claws
Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023), 279–282
-
Three infinite families of Shilla graphs do not exist
Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 45–50
-
Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1075–1082
-
Distance-regular graph with intersection array $\{140,108,18;1,18,105\}$ does not exist
Vladikavkaz. Mat. Zh., 23:2 (2021), 65–69
-
On distance-regular graphs with $c_2=2$
Diskr. Mat., 32:1 (2020), 74–80
-
On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$
Sib. Èlektron. Mat. Izv., 16 (2019), 1385–1392
-
Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist
Sib. Èlektron. Mat. Izv., 16 (2019), 1254–1259
-
International conference “Algebra, Number Theory, and Mathematical Modeling of Dynamic Systems” devoted to the occasion of 70th birthday of A. Kh. Zhurtov
Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 283–287
-
Distance-Regular Shilla Graphs with $b_2=c_2$
Mat. Zametki, 103:5 (2018), 730–744
-
Inverse problems of graph theory: generalized quadrangles
Sib. Èlektron. Mat. Izv., 15 (2018), 927–934
-
On distance-regular graph $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$
Sib. Èlektron. Mat. Izv., 15 (2018), 175–185
-
Codes in distance-regular graphs with $\theta_2~= -1$
Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 155–163
-
On distance-regular graphs with $\theta_2=-1$
Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018), 215–228
-
Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$
Sib. Èlektron. Mat. Izv., 14 (2017), 178–189
-
On automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}
Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 182–190
-
On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 212–219
-
On distance-regular graphs with $\lambda=2$
J. Sib. Fed. Univ. Math. Phys., 7:2 (2014), 204–210
-
On strongly regular graphs with $b_1<26$
Diskr. Mat., 25:3 (2013), 22–32
-
Edge-symmetric strongly regular graphs with at most 100 vertices
Sib. Èlektron. Mat. Izv., 10 (2013), 22–30
-
On strongly regular graphs with $b_1<24$
Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 187–194
-
Strongly $(s-2)$-uniform extensions of partial geometries $pG_\alpha(s,t)$
Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 244–257
-
On conservation laws in affine Toda systems
Vladikavkaz. Mat. Zh., 13:1 (2011), 59–70
-
On automorphisms of 4-isoregular graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 78–87
-
On amply regular graphs with $k=10$, $\lambda=3$
Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010), 75–90
-
On amply regular graphs with $b_1\le5$
Sib. Èlektron. Mat. Izv., 4 (2007), 1–11
-
Uniform extensions of partial geometries
Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007), 148–157
-
Slender partial quadrangles and their automorphisms
Algebra Logika, 45:5 (2006), 603–619
© , 2024