RUS  ENG
Full version
PEOPLE

Nirova Marina Sefovna

Publications in Math-Net.Ru

  1. Finite groups without elements of order 10: the case of solvable or almost simple groups

    Sibirsk. Mat. Zh., 65:4 (2024),  636–644
  2. On Some arithmetic applications to the theory of symmetric groups

    Chebyshevskii Sb., 24:4 (2023),  252–263
  3. One corollary of description of finite groups without elements of order $6$

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  854–858
  4. On Graphs in Which the Neighborhoods of Vertices Are Edge-Regular Graphs without 3-Claws

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  279–282
  5. Three infinite families of Shilla graphs do not exist

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  45–50
  6. Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1075–1082
  7. Distance-regular graph with intersection array $\{140,108,18;1,18,105\}$ does not exist

    Vladikavkaz. Mat. Zh., 23:2 (2021),  65–69
  8. On distance-regular graphs with $c_2=2$

    Diskr. Mat., 32:1 (2020),  74–80
  9. On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1385–1392
  10. Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist

    Sib. Èlektron. Mat. Izv., 16 (2019),  1254–1259
  11. International conference “Algebra, Number Theory, and Mathematical Modeling of Dynamic Systems” devoted to the occasion of 70th birthday of A. Kh. Zhurtov

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  283–287
  12. Distance-Regular Shilla Graphs with $b_2=c_2$

    Mat. Zametki, 103:5 (2018),  730–744
  13. Inverse problems of graph theory: generalized quadrangles

    Sib. Èlektron. Mat. Izv., 15 (2018),  927–934
  14. On distance-regular graph $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$

    Sib. Èlektron. Mat. Izv., 15 (2018),  175–185
  15. Codes in distance-regular graphs with $\theta_2~= -1$

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  155–163
  16. On distance-regular graphs with $\theta_2=-1$

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  215–228
  17. Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$

    Sib. Èlektron. Mat. Izv., 14 (2017),  178–189
  18. On automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  182–190
  19. On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  212–219
  20. On distance-regular graphs with $\lambda=2$

    J. Sib. Fed. Univ. Math. Phys., 7:2 (2014),  204–210
  21. On strongly regular graphs with $b_1<26$

    Diskr. Mat., 25:3 (2013),  22–32
  22. Edge-symmetric strongly regular graphs with at most 100 vertices

    Sib. Èlektron. Mat. Izv., 10 (2013),  22–30
  23. On strongly regular graphs with $b_1<24$

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  187–194
  24. Strongly $(s-2)$-uniform extensions of partial geometries $pG_\alpha(s,t)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  244–257
  25. On conservation laws in affine Toda systems

    Vladikavkaz. Mat. Zh., 13:1 (2011),  59–70
  26. On automorphisms of 4-isoregular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  78–87
  27. On amply regular graphs with $k=10$, $\lambda=3$

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  75–90
  28. On amply regular graphs with $b_1\le5$

    Sib. Èlektron. Mat. Izv., 4 (2007),  1–11
  29. Uniform extensions of partial geometries

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  148–157
  30. Slender partial quadrangles and their automorphisms

    Algebra Logika, 45:5 (2006),  603–619


© Steklov Math. Inst. of RAS, 2024