RUS  ENG
Full version
PEOPLE

Rusanov Vyacheslav Anatol'evich

Publications in Math-Net.Ru

  1. On polylinear differential realization of the determined dynamic chaos in the class of higher order equations with delay

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10,  3–21
  2. Rayleigh–Ritz operator in inverse problems for higher order multilinear nonautonomous evolution equations

    Mat. Tr., 26:2 (2023),  162–176
  3. Metric properties of the Rayleigh–Ritz operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9,  54–63
  4. On the differential realization of a second-order bilinear system in a Hilbert space

    Sib. Zh. Ind. Mat., 22:2 (2019),  27–36
  5. On the solvability of the problem of realization of the operator functions of a nonlinear regulator of a second-order dynamical system

    Sib. Zh. Ind. Mat., 18:4 (2015),  61–74
  6. On realization of quasi-linear systems described by stationary differential equations in Hilbert space

    Probl. Upr., 2013, no. 1,  7–18
  7. On inverse problems of nonlinear system analysis. A behavioral approach

    Probl. Upr., 2011, no. 5,  14–21
  8. The entropy maximum principle in the structural identification of dynamical systems: an analytic approach

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 11,  16–24
  9. On the theory of realization of strong differential models. II

    Sib. Zh. Ind. Mat., 8:2 (2005),  46–56
  10. On the theory of realization of strong differential models. I

    Sib. Zh. Ind. Mat., 8:1 (2005),  53–63
  11. A geometric approach to the solution of some inverse problems in system analysis

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 10,  18–28
  12. On a class of strong differential models over a countable set of dynamic processes of finite character

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 2,  32–40
  13. Geometric characteristics of the existence properties of finite-dimensional $(A,B)$-models in problems of structural-parametric identification

    Avtomat. i Telemekh., 1999, no. 1,  3–8
  14. Order characteristics of existence properties of strong linear finite-dimensional differential models

    Differ. Uravn., 35:1 (1999),  43–50
  15. A theorem on the existence of a strong model

    Avtomat. i Telemekh., 1995, no. 8,  64–73
  16. On the axiomatic theory of the identification of dynamical systems. II. Identification of linear systems.

    Avtomat. i Telemekh., 1994, no. 9,  120–133
  17. On an axiomatic theory of the identification of dynamical systems. I. Basic structures

    Avtomat. i Telemekh., 1994, no. 8,  126–136


© Steklov Math. Inst. of RAS, 2024