RUS  ENG
Full version
PEOPLE

Klevtsova Yulia Yur'evna

Publications in Math-Net.Ru

  1. On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  1015–1037
  2. On integral properties of stationary measures for the stochastic system of the Lorenz model describing a baroclinic atmosphere

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  984–1014
  3. On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere

    Mat. Sb., 208:7 (2017),  19–67
  4. The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere

    Mat. Sb., 206:3 (2015),  91–142
  5. On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere

    Mat. Sb., 204:9 (2013),  73–98
  6. Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere

    Mat. Sb., 203:10 (2012),  117–144
  7. Exponential Dichotomy of Linear Systems of Differential Equations with Periodic Coefficients

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:4 (2008),  40–48
  8. On a characteristic of asymptotic stability of solutions to linear systems with periodic coefficients

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:3 (2008),  60–80
  9. An algorithm for the numerical investigation of the asymptotic stability of solutions of linear systems with periodic coefficients

    Sib. Zh. Ind. Mat., 10:3 (2007),  58–70
  10. On the numerical investigation of the asymptotic stability of solutions of linear systems with periodic coefficients

    Sib. Zh. Ind. Mat., 8:2 (2005),  103–115


© Steklov Math. Inst. of RAS, 2024