RUS  ENG
Full version
PEOPLE

Dykhta Vladimir Aleksandrovich

Publications in Math-Net.Ru

  1. Feedback minimum principle for optimal control problems with terminal conditions and its extensions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 241 (2025),  18–29
  2. Support majorants and feedback minimum principles for discrete optimal control problems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 234 (2024),  43–49
  3. Methods for improving the efficiency of the positional minimum principle in optimal control problems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224 (2023),  54–64
  4. Feedback minimum principle: variational strengthening of the concept of extremality in optimal control

    Bulletin of Irkutsk State University. Series Mathematics, 41 (2022),  19–39
  5. On the set of necessary optimality conditions with positional controls generated by weakly decreasing solutions of the Hamilton-Jacobi inequality

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022),  83–93
  6. Feedback minimum principle for impulsive processes

    Bulletin of Irkutsk State University. Series Mathematics, 25 (2018),  46–62
  7. Feedback minimum principle for quasi-optimal processes of terminally-constrained control problems

    Bulletin of Irkutsk State University. Series Mathematics, 19 (2017),  113–128
  8. Positional strengthenings of the maximum principle and sufficient optimality conditions

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015),  73–86
  9. Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems

    Avtomat. i Telemekh., 2014, no. 11,  19–37
  10. Weakly monotone solutions of the Hamilton–Jacobi inequality and optimality conditions with positional controls

    Avtomat. i Telemekh., 2014, no. 5,  31–49
  11. Variational Optimality Conditions with Feedback Descent Controls that Strengthen the Maximum Principle

    Bulletin of Irkutsk State University. Series Mathematics, 8 (2014),  86–103
  12. Hamilton–Jacobi inequalities and the optimality conditions in the problems of control with common end constraints

    Avtomat. i Telemekh., 2011, no. 9,  13–27
  13. Positional solutions of Hamilton–Jacobi equations in control problems for discrete-continuous systems

    Avtomat. i Telemekh., 2011, no. 6,  48–63
  14. The canonical theory of the impulse process optimality

    CMFD, 42 (2011),  118–124
  15. Approximate solution to the resource consumption minimization problem. II. Estimates for the proximity of controls

    Sib. Zh. Ind. Mat., 14:3 (2011),  3–13
  16. Approximate solution to the resource consumption minimization problem. I. Construction of a quasioptimal control

    Sib. Zh. Ind. Mat., 14:2 (2011),  3–14
  17. Analysis of sufficient optimality conditions with a set of Lyapunov type functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  66–75
  18. Hamilton–Jacobi inequalities in control problems for impulsive dynamical systems

    Trudy Mat. Inst. Steklova, 271 (2010),  93–110
  19. Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 1,  3–43
  20. A maximum principle for smooth optimal impulsive control problems with multipoint state constraints

    Zh. Vychisl. Mat. Mat. Fiz., 49:6 (2009),  981–997
  21. Lyapunov–Krotov inequality and sufficient conditions in optimal control

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 110 (2006),  76–108
  22. A Variational Maximum Principle for Classical Optimal Control Problems

    Avtomat. i Telemekh., 2002, no. 4,  47–54
  23. Linear Lyapunov–Krotov functions and sufficient conditions for optimality in the form of the maximum principle

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 12,  11–22
  24. Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12,  32–40
  25. The maximum principle in nonsmooth optimal impulse control problems with multipoint phase constraints

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 2,  19–32
  26. Impulsive optimal control in models of economics and quantum electronics

    Avtomat. i Telemekh., 1999, no. 11,  100–112
  27. The maximum principle in nonsmooth optimal control problems with discontinuous trajectories

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 12,  26–37
  28. Necessary conditions for the optimality of impulse processes with constraints on the image of the control measure

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12,  9–16
  29. The variational maximum principle and second-order optimality conditions for impulse processes and singular processes

    Sibirsk. Mat. Zh., 35:1 (1994),  70–82
  30. A variational maximum principle for pulse and singular regimes in an optimization problem that is linear with respect to control

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 11,  89–91
  31. Minimum conditions on the set of sequences in a degenerate variational problem

    Mat. Zametki, 34:5 (1983),  735–744
  32. Conditions of loca*l minimum for singular modes in systems with linear control

    Avtomat. i Telemekh., 1981, no. 12,  5–10
  33. Singular modes of a nonlinear system in the case of multiple maxima

    Avtomat. i Telemekh., 1979, no. 2,  16–19
  34. Singular problems of optimal control and the method of multiple maxima

    Avtomat. i Telemekh., 1977, no. 3,  51–59
  35. Sufficient conditions for a strong minimum for degenerate optimal control problems

    Differ. Uravn., 12:12 (1976),  2129–2138

  36. On the 85th birthday anniversary of the RAS Corresponding Member, professor A. A. Tolstonogov

    Bulletin of Irkutsk State University. Series Mathematics, 51 (2025),  167–178
  37. Scientific achievements of professor V. I. Gurman

    Bulletin of Irkutsk State University. Series Mathematics, 19 (2017),  6–21
  38. In Memory of Professor Vladimir Iosifovich Gurman (1934–2016)

    Bulletin of Irkutsk State University. Series Mathematics, 19 (2017),  1–5


© Steklov Math. Inst. of RAS, 2025