|
|
Publications in Math-Net.Ru
-
On definitions of Finsler spaces and axiomatics of singular Finsler geometry
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 175 (2020), 3–18
-
On the geometry of similarly homogeneous $\mathbb{R}$-trees
Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4, 3–15
-
Normed planes in tangent cone to chord space of nonpositive curvature
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1, 3–17
-
Normed Space Structure on a Busemann $G$-Space of Cone Type
Mat. Zametki, 101:2 (2017), 169–180
-
Geometry of tangent cone to $G$-space of nonpositive curvature with distinguished family of segments
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 1, 3–14
-
The proof of Busemann conjecture for $G$-spaces with non-positive curvature
Algebra i Analiz, 26:2 (2014), 1–20
-
A. D. Alexandrov's problem for non-positively curved spaces in the sense of Busemann
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 9, 10–35
-
Geometric constructions in the class of Busemann nonpositively curved spaces
Zh. Mat. Fiz. Anal. Geom., 5:1 (2009), 25–37
-
Semilinear metric semilattices on $\mathbb R$-trees
Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 6, 3–13
-
Geometry of Ideal Boundaries of Geodesic Spaces with Nonpositive Curvature in the Sense of Busemann
Mat. Tr., 10:1 (2007), 16–28
-
Dimensions of $\mathbb R$-Trees and Self-Similar Fractal Spaces of Nonpositive Curvature
Mat. Tr., 9:2 (2006), 3–22
-
A. D. Alexandrov's problem for CAT(0)-spaces
Sibirsk. Mat. Zh., 47:1 (2006), 3–24
-
Recovering the metric of a $CAT(0)$-space by a diagonal tube
Zap. Nauchn. Sem. POMI, 299 (2003), 5–29
© , 2024