RUS  ENG
Full version
PEOPLE

Andreev Pavel Dmitrievich

Publications in Math-Net.Ru

  1. On definitions of Finsler spaces and axiomatics of singular Finsler geometry

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 175 (2020),  3–18
  2. On the geometry of similarly homogeneous $\mathbb{R}$-trees

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4,  3–15
  3. Normed planes in tangent cone to chord space of nonpositive curvature

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1,  3–17
  4. Normed Space Structure on a Busemann $G$-Space of Cone Type

    Mat. Zametki, 101:2 (2017),  169–180
  5. Geometry of tangent cone to $G$-space of nonpositive curvature with distinguished family of segments

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 1,  3–14
  6. The proof of Busemann conjecture for $G$-spaces with non-positive curvature

    Algebra i Analiz, 26:2 (2014),  1–20
  7. A. D. Alexandrov's problem for non-positively curved spaces in the sense of Busemann

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 9,  10–35
  8. Geometric constructions in the class of Busemann nonpositively curved spaces

    Zh. Mat. Fiz. Anal. Geom., 5:1 (2009),  25–37
  9. Semilinear metric semilattices on $\mathbb R$-trees

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 6,  3–13
  10. Geometry of Ideal Boundaries of Geodesic Spaces with Nonpositive Curvature in the Sense of Busemann

    Mat. Tr., 10:1 (2007),  16–28
  11. Dimensions of $\mathbb R$-Trees and Self-Similar Fractal Spaces of Nonpositive Curvature

    Mat. Tr., 9:2 (2006),  3–22
  12. A. D. Alexandrov's problem for CAT(0)-spaces

    Sibirsk. Mat. Zh., 47:1 (2006),  3–24
  13. Recovering the metric of a $CAT(0)$-space by a diagonal tube

    Zap. Nauchn. Sem. POMI, 299 (2003),  5–29


© Steklov Math. Inst. of RAS, 2024