|
|
Publications in Math-Net.Ru
-
Optimal control of the Navier — Stokes system with a space variable in a network-like domain
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023), 549–562
-
Optimal control of thermal and wave processes in composite materials
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:3 (2023), 403–418
-
The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:1 (2023), 4–9
-
Stability of operator-difference schemes with weights for the hyperbolic equation in the space of summable functions with carriers in the network-like domain
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:3 (2022), 425–437
-
Zubov's optimum damping method in the control problem of one gyroscope system
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:2 (2022), 278–284
-
Optimal control of a differential-difference parabolic system with distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:4 (2021), 433–448
-
Lyapunov — Krasovskii functionals for homogeneous systems with multiple delays
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:2 (2021), 183–195
-
Stability of a weak solution for a hyperbolic system with distributed parameters on a graph
Russian Universities Reports. Mathematics, 26:133 (2021), 55–67
-
The stability of differential-difference equations with proportional time delay. I. Linear controlled system
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:3 (2020), 316–325
-
Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020), 129–143
-
Stability of weak solutions of parabolic systems with distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:4 (2019), 457–471
-
About one approach to solving the inverse problem for parabolic equation
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:3 (2019), 323–336
-
Stabilization of weak solutions of parabolic systems with distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:2 (2019), 187–198
-
Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems
Zhurnal SVMO, 20:1 (2018), 13–22
-
On stabilization of a class of systems with time proportional delay
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:2 (2018), 165–172
-
On stability control of a parabolic systems with distributed parameters on the graph
Tambov University Reports. Series: Natural and Technical Sciences, 23:123 (2018), 368–376
-
Analysis of stability and stabilization of nonlinear systems via decomposition
Sibirsk. Mat. Zh., 56:6 (2015), 1215–1233
-
Stability analysis of homogeneous differential-difference equation with linear delay
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 3, 105–115
-
To the question about asymptotic stability of linear non-stationary systems
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 2, 166–175
-
V. V. Provotorov. Eigenfunction of boundary value problems on graphs and applications
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3, 181–182
-
On the asymptotic stability of solutions of a class of systems of nonlinear differential equations with delay
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 5, 3–12
-
On the asymptotic stability of solutions of nonlinear systems with delay
Sibirsk. Mat. Zh., 53:3 (2012), 495–508
-
Approximation of the solutions of exponentially stable difference-differential equations
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 3, 29–38
-
The algebraic approach to stability analysis of differential-difference systems
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 1, 9–20
-
Preservation of stability under discretization of systems of ordinary differential equations
Sibirsk. Mat. Zh., 51:3 (2010), 481–497
-
On stability of the solutions of a class of nonlinear delay systems
Avtomat. i Telemekh., 2006, no. 9, 3–14
-
On the stability of solutions of nonlinear difference systems
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2, 3–12
-
On stability of solutions to one class of nonlinear difference systems
Sibirsk. Mat. Zh., 44:6 (2003), 1217–1225
-
Necessary and sufficient conditions for the stability of a linear family of polynomials
Avtomat. i Telemekh., 1994, no. 10, 125–134
-
Stability of families of quasi-polynomials of neutral type
Avtomat. i Telemekh., 1993, no. 1, 92–107
-
On vibrational stabilization of linear systems
Avtomat. i Telemekh., 1980, no. 2, 31–34
-
In memory of Spivak Semen Izrailevich
Zhurnal SVMO, 22:4 (2020), 463–466
-
In memory of Vladimir Nikolaevich Shchennikov
Zhurnal SVMO, 21:2 (2019), 269–273
-
In memory of Boris Vladimirovich Loginov
Zhurnal SVMO, 20:1 (2018), 103–106
-
Stanislav Nikolaevich Vasiliev (the 70th of his birthday anniversary)
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2016, no. 3, 128–129
-
V. F. Demianov
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2, 154–156
-
P. A. Nelepin (to the 85th birthday anniversary)
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3, 183–184
-
The memory of N. V. Zubov
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 2, 97–98
-
Vladimir Ivanovich Zubov [1930–2000]
Differ. Uravn., 37:8 (2001), 1148
© , 2024