RUS  ENG
Full version
PEOPLE

Potapov Dmitriy Konstantinovich

Publications in Math-Net.Ru

  1. Dynamics of relay systems with hysteresis and harmonic perturbation

    Eurasian Math. J., 15:2 (2024),  48–60
  2. Semi-regular solutions of integral equations with discontinuous nonlinearities

    Mat. Zametki, 116:1 (2024),  109–121
  3. On Solutions of the One-Dimensional Goldshtik Problem

    Mat. Zametki, 115:1 (2024),  14–23
  4. A variational inequality for the Sturm–Liouville problem with discontinuous nonlinearity

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  981–986
  5. Control and perturbation in Sturm — Liouville's problem with discontinuous nonlinearity

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:2 (2023),  275–282
  6. On solutions of a boundary value problem for a second-order differential equation with a parameter and discontinuous right-hand side

    Zh. Vychisl. Mat. Mat. Fiz., 63:8 (2023),  1296–1308
  7. One class of quasilinear elliptic type equations with discontinuous nonlinearities

    Izv. RAN. Ser. Mat., 86:6 (2022),  143–160
  8. Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth

    Mat. Sb., 213:7 (2022),  121–138
  9. Periodic modes in an automatic control system with a three-position hysteresis relay

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022),  596–607
  10. About a problem on conductor heating

    Chelyab. Fiz.-Mat. Zh., 6:3 (2021),  299–311
  11. Positive solutions of superlinear elliptic problems with discontinuous non-linearities

    Izv. RAN. Ser. Mat., 85:2 (2021),  95–112
  12. Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities

    Mat. Zametki, 110:2 (2021),  239–257
  13. Variational method for elliptic systems with discontinuous nonlinearities

    Mat. Sb., 212:5 (2021),  133–152
  14. Method for the transformation of complex automatic control systems to integrable form

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:2 (2021),  196–212
  15. On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity

    Izv. RAN. Ser. Mat., 84:3 (2020),  168–184
  16. Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020),  186–199
  17. Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity

    Mat. Sb., 210:7 (2019),  145–170
  18. Elenbaas Problem of Electric Arc Discharge

    Mat. Zametki, 103:1 (2018),  92–100
  19. Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance

    Mat. Zametki, 101:2 (2017),  247–261
  20. Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides

    Mat. Sb., 208:1 (2017),  165–182
  21. Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities

    Sibirsk. Mat. Zh., 58:2 (2017),  375–385
  22. Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity

    Mat. Tr., 19:1 (2016),  91–105
  23. The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities

    Mat. Sb., 206:9 (2015),  121–138
  24. Spectral Problems for Variational Inequalities with Discontinuous Operators

    Mat. Zametki, 93:2 (2013),  252–262
  25. On a number of solutions in problems with spectral parameter for equations with discontinuous operators

    Ufimsk. Mat. Zh., 5:2 (2013),  56–62
  26. On number of solutions for one class of elliptic equations with a spectral parameter and discontinuous nonlinearity

    Dal'nevost. Mat. Zh., 12:1 (2012),  86–88
  27. On elliptic equations with spectral parameter and discontinuous nonlinearity

    J. Sib. Fed. Univ. Math. Phys., 5:3 (2012),  417–421
  28. Control problems for equations with a spectral parameter and a discontinuous operator under perturbations

    J. Sib. Fed. Univ. Math. Phys., 5:2 (2012),  239–245
  29. On solutions of the Gol'dshtik problem

    Sib. Zh. Vychisl. Mat., 15:4 (2012),  409–415
  30. On a class of elliptic variational inequalities with a spectral parameter and discontinuous nonlinearity

    Sibirsk. Mat. Zh., 53:1 (2012),  205–212
  31. On the character of nonlinearity discontinuities in eigenvalue problems for elliptic equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(28) (2012),  188–190
  32. On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012),  251–255
  33. Estimation of operator norms in eigenvalue problems for equations with discontinuous operators

    Izv. Saratov Univ. Math. Mech. Inform., 11:4 (2011),  41–45
  34. Approximation of the One-Parameter Family of Dirichlet Problems for Higher-Order Elliptic-Type Equations with Discontinuous Nonlinearities in the Resonance Case

    Mat. Zametki, 90:3 (2011),  467–469
  35. Bifurcation Problems for Equations of Elliptic Type with Discontinuous Nonlinearities

    Mat. Zametki, 90:2 (2011),  280–284
  36. A continuous approximation for a 1D analogue of the Gol'dshtik model for separated flows of incompressible fluid

    Sib. Zh. Vychisl. Mat., 14:3 (2011),  291–296
  37. Approximations of Gol'dshtik's model

    Zhurnal SVMO, 13:2 (2011),  100–107
  38. Control of spectral problems for equations with discontinuous operators

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  190–200
  39. Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators

    Ufimsk. Mat. Zh., 3:1 (2011),  43–46
  40. Continuous Approximations of Goldshtik's Model

    Mat. Zametki, 87:2 (2010),  262–266
  41. Estimations of a Differential Operator in Spectral Parameter Problems for Elliptic Equations with Discontinuous Nonlinearities

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  268–271
  42. Approximation of boundary value problems of elliptic type with a spectral parameter and a discontinuous nonlinearity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 4,  49–55
  43. О существовании полуоси положительных собственных значений для уравнений с разрывными операторами

    Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6,  114–119
  44. Existence of a ray of eigenvalues for equations with discontinuous operators

    Sibirsk. Mat. Zh., 42:4 (2001),  911–919

  45. К 70-летию профессора Вячеслава Николаевича Павленко

    Chelyab. Fiz.-Mat. Zh., 2:4 (2017),  383–387


© Steklov Math. Inst. of RAS, 2024