|
|
Publications in Math-Net.Ru
-
Dynamics of relay systems with hysteresis and harmonic perturbation
Eurasian Math. J., 15:2 (2024), 48–60
-
Semi-regular solutions of integral equations with discontinuous nonlinearities
Mat. Zametki, 116:1 (2024), 109–121
-
On Solutions of the One-Dimensional Goldshtik Problem
Mat. Zametki, 115:1 (2024), 14–23
-
A variational inequality for the Sturm–Liouville problem with discontinuous nonlinearity
Sib. Èlektron. Mat. Izv., 20:2 (2023), 981–986
-
Control and perturbation in Sturm — Liouville's problem with discontinuous nonlinearity
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:2 (2023), 275–282
-
On solutions of a boundary value problem for a second-order differential equation with a parameter and discontinuous right-hand side
Zh. Vychisl. Mat. Mat. Fiz., 63:8 (2023), 1296–1308
-
One class of quasilinear elliptic type equations with discontinuous nonlinearities
Izv. RAN. Ser. Mat., 86:6 (2022), 143–160
-
Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth
Mat. Sb., 213:7 (2022), 121–138
-
Periodic modes in an automatic control system with a three-position hysteresis relay
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022), 596–607
-
About a problem on conductor heating
Chelyab. Fiz.-Mat. Zh., 6:3 (2021), 299–311
-
Positive solutions of superlinear elliptic problems with discontinuous non-linearities
Izv. RAN. Ser. Mat., 85:2 (2021), 95–112
-
Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities
Mat. Zametki, 110:2 (2021), 239–257
-
Variational method for elliptic systems with discontinuous nonlinearities
Mat. Sb., 212:5 (2021), 133–152
-
Method for the transformation of complex automatic control systems to integrable form
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:2 (2021), 196–212
-
On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity
Izv. RAN. Ser. Mat., 84:3 (2020), 168–184
-
Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020), 186–199
-
Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity
Mat. Sb., 210:7 (2019), 145–170
-
Elenbaas Problem of Electric Arc Discharge
Mat. Zametki, 103:1 (2018), 92–100
-
Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance
Mat. Zametki, 101:2 (2017), 247–261
-
Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides
Mat. Sb., 208:1 (2017), 165–182
-
Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities
Sibirsk. Mat. Zh., 58:2 (2017), 375–385
-
Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity
Mat. Tr., 19:1 (2016), 91–105
-
The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities
Mat. Sb., 206:9 (2015), 121–138
-
Spectral Problems for Variational Inequalities with Discontinuous Operators
Mat. Zametki, 93:2 (2013), 252–262
-
On a number of solutions in problems with spectral parameter for equations with discontinuous operators
Ufimsk. Mat. Zh., 5:2 (2013), 56–62
-
On number of solutions for one class of elliptic equations with a spectral parameter and discontinuous nonlinearity
Dal'nevost. Mat. Zh., 12:1 (2012), 86–88
-
On elliptic equations with spectral parameter and discontinuous nonlinearity
J. Sib. Fed. Univ. Math. Phys., 5:3 (2012), 417–421
-
Control problems for equations with a spectral parameter and a discontinuous operator under perturbations
J. Sib. Fed. Univ. Math. Phys., 5:2 (2012), 239–245
-
On solutions of the Gol'dshtik problem
Sib. Zh. Vychisl. Mat., 15:4 (2012), 409–415
-
On a class of elliptic variational inequalities with a spectral parameter and discontinuous nonlinearity
Sibirsk. Mat. Zh., 53:1 (2012), 205–212
-
On the character of nonlinearity discontinuities in eigenvalue problems for elliptic equations
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(28) (2012), 188–190
-
On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012), 251–255
-
Estimation of operator norms in eigenvalue problems for equations with discontinuous operators
Izv. Saratov Univ. Math. Mech. Inform., 11:4 (2011), 41–45
-
Approximation of the One-Parameter Family of Dirichlet Problems for Higher-Order Elliptic-Type Equations with Discontinuous Nonlinearities in the Resonance Case
Mat. Zametki, 90:3 (2011), 467–469
-
Bifurcation Problems for Equations of Elliptic Type with Discontinuous Nonlinearities
Mat. Zametki, 90:2 (2011), 280–284
-
A continuous approximation for a 1D analogue of the Gol'dshtik model for separated flows of incompressible fluid
Sib. Zh. Vychisl. Mat., 14:3 (2011), 291–296
-
Approximations of Gol'dshtik's model
Zhurnal SVMO, 13:2 (2011), 100–107
-
Control of spectral problems for equations with discontinuous operators
Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011), 190–200
-
Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators
Ufimsk. Mat. Zh., 3:1 (2011), 43–46
-
Continuous Approximations of Goldshtik's Model
Mat. Zametki, 87:2 (2010), 262–266
-
Estimations of a Differential Operator in Spectral Parameter Problems for Elliptic Equations with Discontinuous Nonlinearities
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010), 268–271
-
Approximation of boundary value problems of elliptic type with a spectral parameter and a discontinuous nonlinearity
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 4, 49–55
-
О существовании полуоси
положительных собственных значений для уравнений
с разрывными операторами
Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6, 114–119
-
Existence of a ray of eigenvalues for equations with discontinuous operators
Sibirsk. Mat. Zh., 42:4 (2001), 911–919
-
К 70-летию профессора Вячеслава Николаевича Павленко
Chelyab. Fiz.-Mat. Zh., 2:4 (2017), 383–387
© , 2024