RUS  ENG
Full version
PEOPLE

Parfenov Anton Igorevich

Publications in Math-Net.Ru

  1. Inductive methods for Hardy inequality on trees

    Ufimsk. Mat. Zh., 16:2 (2024),  37–66
  2. Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. II

    Sib. Èlektron. Mat. Izv., 20:1 (2023),  211–244
  3. Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. I

    Sib. Èlektron. Mat. Izv., 17 (2020),  2142–2189
  4. Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips

    Sib. Èlektron. Mat. Izv., 16 (2019),  1171–1195
  5. Approximate calculation of the defect of a Lipschitz cylindrical condenser

    Sib. Èlektron. Mat. Izv., 15 (2018),  906–926
  6. Series in a Lipschitz perturbation of the boundary for solving the Dirichlet problem

    Mat. Tr., 20:1 (2017),  158–200
  7. Dicrete Hölder estimates for a certain kind of parametrix. II

    Ufimsk. Mat. Zh., 9:2 (2017),  63–93
  8. Discrete Hölder estimates for a parametrix variation

    Mat. Tr., 17:1 (2014),  175–201
  9. Error bound for a generalized M. A. Lavrentiev's formula via the norm in a fractional Sobolev space

    Sib. Èlektron. Mat. Izv., 10 (2013),  335–377
  10. Weighted a priori estimate in straightenable domains of local Lyapunov-Dini type

    Sib. Èlektron. Mat. Izv., 9 (2012),  65–150
  11. A characterization of multipliers in the Hedberg–Netrusov spaces

    Mat. Tr., 14:1 (2011),  158–194
  12. A criterion for straightening a Lipschitz surface in the Lizorkin–Triebel sense. III

    Mat. Tr., 13:2 (2010),  139–178
  13. A criterion for the straightening of a Lipschitz surface in the Lizorkin–Triebel sense. II

    Mat. Tr., 12:2 (2009),  139–159
  14. A criterion for straightening of a Lipschitz surface in the Lizorkin–Triebel sense. I

    Mat. Tr., 12:1 (2009),  144–204
  15. A Discrete Norm on a Lipschitz Surface and the Sobolev Straightening of a Boundary

    Mat. Tr., 10:2 (2007),  163–186
  16. On the existence of a contraction mapping preserving boundary values

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007),  65–87
  17. The Ćurgus Condition in Indefinite Sturm–Liouville Problems

    Mat. Tr., 7:1 (2004),  153–188
  18. On an embedding criterion for interpolation spaces and application to indefinite spectral problems

    Sibirsk. Mat. Zh., 44:4 (2003),  810–819


© Steklov Math. Inst. of RAS, 2024