RUS  ENG
Full version
PEOPLE

Slepenchuk K M

Publications in Math-Net.Ru

  1. Theorems of Tauberian type for matrix transformations of series

    Trudy Mat. Inst. Steklov., 180 (1987),  200–201
  2. Representation of an analytic function of two variables by means of an infinite product

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 3,  81–83
  3. Conditions of absolute and strong summability in degree $p$ of series

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 10,  79–82
  4. Theorems of Tauberian type for matrix transformations and their application to Borel's method

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 11,  100–105
  5. Absolute and strong $p$th power summability $(p>1)$ of double series by matrix methods, and theorems of Tauberian type for these methods

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 7,  76–86
  6. Сильная суммируемость рядов матричными методами, II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 12,  53–63
  7. Сильная суммируемость рядов матричными методами, I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 11,  78–88
  8. Strong summability of double series by matrix methods and Tauberian theorems for these methods

    Mat. Zametki, 17:3 (1975),  391–400
  9. Absolute summability of series by matrix methods. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 7,  72–82
  10. Absolute summability of series by matrix methods. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 6,  65–73
  11. Certain tests for the convergence of infinite products

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 1,  69–72
  12. Absolute summability of infinite products

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 6,  107–111
  13. Conditions for the uniform convergence of infinite products

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 3,  82–86
  14. A certain general Tauberian type theorem for absolute summability of series, and its application to the Borel method

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 3,  61–65
  15. The anThe analogue of a certain Tauberian type theorem for infinite products

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 4,  70–71
  16. Tauberian type theorems for matrix methods of summation of series and their application

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 1,  92–97
  17. A general theorem of Tauberian type and its application to $(I^\ast,p_n,\lambda)-methods$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 12,  58–64
  18. A general Tauberian theorem for infinite products

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 8,  72–75
  19. On the question of an analog of Abel's theorem for infinite products

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 2,  64–66
  20. Summation of integrals by the Hölder and Cesàro methods of negative order

    Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 5,  112–117
  21. Theorems of Tauberian type for absolute summability by Abel methods

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 6,  135–139
  22. The absolute summability of series by Cesàro methods of negative order

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 5,  128–131
  23. Summation of double series by the generalized Hölder method

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 4,  126–131
  24. The summation of series by $(C_\theta,\,\lambda)$-methods

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 2,  166–170
  25. Tauberian theorems for generalized Hölder methods of negative order

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 1,  146–152
  26. Tauberian theorems for certain methods of summation of double series

    Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 6,  153–158
  27. Tauberian theorems for certain methods of summing series

    Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 5,  100–103
  28. Theorems of Tauberian type for $(C_\theta^{(\alpha)},\lambda)$-methods of summing series

    Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 3,  131–135
  29. Non-linear transformations of some classes of sequences (products)

    Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 2,  144–151
  30. Some special summation methods for infinite products

    Izv. Vyssh. Uchebn. Zaved. Mat., 1963, no. 6,  133–137
  31. On a property of infinite products

    Uspekhi Mat. Nauk, 10:1(63) (1955),  151–153
  32. Representation of an analytic function of two variables by means of a double infinite product

    Uspekhi Mat. Nauk, 8:2(54) (1953),  139–142


© Steklov Math. Inst. of RAS, 2024