|
|
Publications in Math-Net.Ru
-
The area of images of classes of measurable sets on Carnot groups with sub-Lorentzian structure
Sibirsk. Mat. Zh., 65:5 (2024), 926–952
-
Area of images of measurable sets on depth 2 Carnot manifolds with sub-Lorentzian structure
Vladikavkaz. Mat. Zh., 26:4 (2024), 78–86
-
Metric characteristics of classes of compact sets on Carnot groups with sub-Lorentzian structure
Vladikavkaz. Mat. Zh., 26:3 (2024), 56–64
-
Lipschitz images of open sets on sub-Lorentzian structures
Mat. Tr., 26:2 (2023), 138–161
-
The area of surfaces on sub-Lorentzian structures of depth two
Mat. Tr., 26:1 (2023), 93–119
-
Sub-Riemannian Co-Area Formula for Classes of Noncontact Mappings of Carnot Groups
Mat. Zametki, 114:6 (2023), 940–944
-
Measure of Images of Contact Mappings on Two-Step Sub-Lorentzian Structures
Mat. Zametki, 113:1 (2023), 149–153
-
Classes of noncontact mappings of Carnot groups and metric properties
Sibirsk. Mat. Zh., 64:6 (2023), 1199–1223
-
Sub-riemannian properties of the level sets of noncontact mappings of Heisenberg groups
Mat. Tr., 25:2 (2022), 107–125
-
Minimal surfaces over Carnot manifolds
Mat. Tr., 25:1 (2022), 74–101
-
On the Approximability and Parametrization of Preimages of Elements of Carnot Groups on Sub-Lorentzian Structures
Mat. Zametki, 111:1 (2022), 140–144
-
Sub-Lorentzian coarea formula for mappings of Carnot groups
Sibirsk. Mat. Zh., 63:3 (2022), 587–612
-
Properties of minimal surfaces over depth 2 Carnot manifolds
Sibirsk. Mat. Zh., 62:6 (2021), 1298–1312
-
The coarea formula for vector functions on Carnot groups with sub-Lorentzian structure
Sibirsk. Mat. Zh., 62:2 (2021), 298–325
-
Space-likeness of classes of level surfaces on Carnot groups and their metric properties
Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 38–42
-
Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure
Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020), 61–64
-
Metric properties of graphs on Carnot–Carathéodory spaces with sub-Lorentzian structure
Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020), 42–46
-
Two-step sub-Lorentzian structures and graph surfaces
Izv. RAN. Ser. Mat., 84:1 (2020), 60–104
-
A Metric Characteristic of Minimal Surfaces on Arbitrary Carnot Groups
Mat. Zametki, 108:6 (2020), 930–935
-
Classes of maximal surfaces on carnot groups
Sibirsk. Mat. Zh., 61:5 (2020), 1009–1026
-
The area of graphs on arbitrary carnot groups with sub-lorentzian structure
Sibirsk. Mat. Zh., 61:4 (2020), 823–848
-
Minimal graph-surfaces on arbitrary two-step Carnot groups
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 5, 15–29
-
On local metric characteristics of level sets of ch1-mappings of carnot manifolds
Sibirsk. Mat. Zh., 60:6 (2019), 1291–1309
-
On the class of Hölder surfaces in Carnot–Carathéodory spaces
Sibirsk. Mat. Zh., 60:5 (2019), 1103–1132
-
Level sets of classes of mappings of two-step Carnot groups in a nonholonomic interpretation
Sibirsk. Mat. Zh., 60:2 (2019), 391–400
-
Polynomial sub-Riemannian differentiability on Carnot–Carathéodory spaces
Sibirsk. Mat. Zh., 59:5 (2018), 1086–1097
-
Three-dimensional graph surfaces on five-dimensional Carnot–Carathéodory spaces
Sibirsk. Mat. Zh., 59:4 (2018), 834–857
-
Maximal surfaces on five-dimensional group structures
Sibirsk. Mat. Zh., 59:3 (2018), 561–579
-
Area formulas for classes of Hölder continuous mappings of Carnot groups
Sibirsk. Mat. Zh., 58:5 (2017), 1056–1079
-
The polynomial sub-Riemannian differentiability of some Hölder mappings of Carnot groups
Sibirsk. Mat. Zh., 58:2 (2017), 305–332
-
Graph surfaces on five-dimensional sub-Lorentzian structures
Sibirsk. Mat. Zh., 58:1 (2017), 122–142
-
Maximal graph surfaces on four-dimensional two-step sub-Lorentzian structures
Sibirsk. Mat. Zh., 57:2 (2016), 350–363
-
Graph surfaces over three-dimensional Lie groups with sub-Riemannian structure
Sibirsk. Mat. Zh., 56:6 (2015), 1351–1365
-
The area formula for graphs on $4$-dimensional $2$-step sub-Lorentzian structures
Sibirsk. Mat. Zh., 56:5 (2015), 1068–1091
-
An area formula for Lipschitz mappings of Carnot–Carathéodory spaces
Izv. RAN. Ser. Mat., 78:3 (2014), 53–78
-
Fine properties of basis vector fields on Carnot–Carathéodory spaces under minimal assumptions on smoothness
Sibirsk. Mat. Zh., 55:1 (2014), 109–123
-
The graphs of Lipschitz functions and minimal surfaces on Carnot groups
Sibirsk. Mat. Zh., 53:4 (2012), 839–861
-
An example of a Carnot manifold with $C^1$-smooth basis vector fields
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 5, 84–87
-
Area and coarea formulas for the mappings of Sobolev classes with values in a metric space
Sibirsk. Mat. Zh., 48:4 (2007), 778–788
-
Metric Rademacher Theorem and the Area Formula for Metric-Valued Lipschitz Mappings
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:4 (2006), 50–69
© , 2025