RUS  ENG
Full version
PEOPLE

Karmanova Maria Borisovna

Publications in Math-Net.Ru

  1. The area of images of classes of measurable sets on Carnot groups with sub-Lorentzian structure

    Sibirsk. Mat. Zh., 65:5 (2024),  926–952
  2. Area of images of measurable sets on depth 2 Carnot manifolds with sub-Lorentzian structure

    Vladikavkaz. Mat. Zh., 26:4 (2024),  78–86
  3. Metric characteristics of classes of compact sets on Carnot groups with sub-Lorentzian structure

    Vladikavkaz. Mat. Zh., 26:3 (2024),  56–64
  4. Lipschitz images of open sets on sub-Lorentzian structures

    Mat. Tr., 26:2 (2023),  138–161
  5. The area of surfaces on sub-Lorentzian structures of depth two

    Mat. Tr., 26:1 (2023),  93–119
  6. Sub-Riemannian Co-Area Formula for Classes of Noncontact Mappings of Carnot Groups

    Mat. Zametki, 114:6 (2023),  940–944
  7. Measure of Images of Contact Mappings on Two-Step Sub-Lorentzian Structures

    Mat. Zametki, 113:1 (2023),  149–153
  8. Classes of noncontact mappings of Carnot groups and metric properties

    Sibirsk. Mat. Zh., 64:6 (2023),  1199–1223
  9. Sub-riemannian properties of the level sets of noncontact mappings of Heisenberg groups

    Mat. Tr., 25:2 (2022),  107–125
  10. Minimal surfaces over Carnot manifolds

    Mat. Tr., 25:1 (2022),  74–101
  11. On the Approximability and Parametrization of Preimages of Elements of Carnot Groups on Sub-Lorentzian Structures

    Mat. Zametki, 111:1 (2022),  140–144
  12. Sub-Lorentzian coarea formula for mappings of Carnot groups

    Sibirsk. Mat. Zh., 63:3 (2022),  587–612
  13. Properties of minimal surfaces over depth 2 Carnot manifolds

    Sibirsk. Mat. Zh., 62:6 (2021),  1298–1312
  14. The coarea formula for vector functions on Carnot groups with sub-Lorentzian structure

    Sibirsk. Mat. Zh., 62:2 (2021),  298–325
  15. Space-likeness of classes of level surfaces on Carnot groups and their metric properties

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  38–42
  16. Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure

    Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020),  61–64
  17. Metric properties of graphs on Carnot–Carathéodory spaces with sub-Lorentzian structure

    Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  42–46
  18. Two-step sub-Lorentzian structures and graph surfaces

    Izv. RAN. Ser. Mat., 84:1 (2020),  60–104
  19. A Metric Characteristic of Minimal Surfaces on Arbitrary Carnot Groups

    Mat. Zametki, 108:6 (2020),  930–935
  20. Classes of maximal surfaces on carnot groups

    Sibirsk. Mat. Zh., 61:5 (2020),  1009–1026
  21. The area of graphs on arbitrary carnot groups with sub-lorentzian structure

    Sibirsk. Mat. Zh., 61:4 (2020),  823–848
  22. Minimal graph-surfaces on arbitrary two-step Carnot groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 5,  15–29
  23. On local metric characteristics of level sets of ch1-mappings of carnot manifolds

    Sibirsk. Mat. Zh., 60:6 (2019),  1291–1309
  24. On the class of Hölder surfaces in Carnot–Carathéodory spaces

    Sibirsk. Mat. Zh., 60:5 (2019),  1103–1132
  25. Level sets of classes of mappings of two-step Carnot groups in a nonholonomic interpretation

    Sibirsk. Mat. Zh., 60:2 (2019),  391–400
  26. Polynomial sub-Riemannian differentiability on Carnot–Carathéodory spaces

    Sibirsk. Mat. Zh., 59:5 (2018),  1086–1097
  27. Three-dimensional graph surfaces on five-dimensional Carnot–Carathéodory spaces

    Sibirsk. Mat. Zh., 59:4 (2018),  834–857
  28. Maximal surfaces on five-dimensional group structures

    Sibirsk. Mat. Zh., 59:3 (2018),  561–579
  29. Area formulas for classes of Hölder continuous mappings of Carnot groups

    Sibirsk. Mat. Zh., 58:5 (2017),  1056–1079
  30. The polynomial sub-Riemannian differentiability of some Hölder mappings of Carnot groups

    Sibirsk. Mat. Zh., 58:2 (2017),  305–332
  31. Graph surfaces on five-dimensional sub-Lorentzian structures

    Sibirsk. Mat. Zh., 58:1 (2017),  122–142
  32. Maximal graph surfaces on four-dimensional two-step sub-Lorentzian structures

    Sibirsk. Mat. Zh., 57:2 (2016),  350–363
  33. Graph surfaces over three-dimensional Lie groups with sub-Riemannian structure

    Sibirsk. Mat. Zh., 56:6 (2015),  1351–1365
  34. The area formula for graphs on $4$-dimensional $2$-step sub-Lorentzian structures

    Sibirsk. Mat. Zh., 56:5 (2015),  1068–1091
  35. An area formula for Lipschitz mappings of Carnot–Carathéodory spaces

    Izv. RAN. Ser. Mat., 78:3 (2014),  53–78
  36. Fine properties of basis vector fields on Carnot–Carathéodory spaces under minimal assumptions on smoothness

    Sibirsk. Mat. Zh., 55:1 (2014),  109–123
  37. The graphs of Lipschitz functions and minimal surfaces on Carnot groups

    Sibirsk. Mat. Zh., 53:4 (2012),  839–861
  38. An example of a Carnot manifold with $C^1$-smooth basis vector fields

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 5,  84–87
  39. Area and coarea formulas for the mappings of Sobolev classes with values in a metric space

    Sibirsk. Mat. Zh., 48:4 (2007),  778–788
  40. Metric Rademacher Theorem and the Area Formula for Metric-Valued Lipschitz Mappings

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:4 (2006),  50–69


© Steklov Math. Inst. of RAS, 2025