RUS  ENG
Full version
PEOPLE

Dmitriev Mikhail Gennad'evich

Publications in Math-Net.Ru

  1. Algorithm for finding feedback in a problem with constraints for one class of nonlinear control systems

    Model. Anal. Inform. Sist., 28:3 (2021),  220–233
  2. Iterative control synthesis algorithm in a singular perturbed nonlinear problem based on the SDRE technology

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2020, no. 1,  76–84
  3. Stabilization in the macroeconomic formally linear control system with state-dependent coefficients

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2019, no. 2,  3–13
  4. The sensitivity of the solution of some optimization problems with perturbation

    Program Systems: Theory and Applications, 7:1 (2016),  47–59
  5. An algorithm for constructing regulators for nonlinear systems with the formal small parameter

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2015, no. 4,  35–44
  6. Assess the sensitivity of a linear convolution of partial criteria under expert determined weight

    Artificial Intelligence and Decision Making, 2014, no. 1,  52–56
  7. Linear regulators design by dynamic modes splitting

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2012, no. 4,  40–48
  8. The “power-society-economy” model with a slightly corrupt discrete hierarchy

    Matem. Mod., 24:2 (2012),  120–128
  9. Steplike contrast structure in an elementary optimal control problem

    Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010),  1381–1392
  10. Оптимальный объем властных полномочий в социально-экономической иерархии по критерию удельного потребления

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2007, no. 4,  4–11
  11. Singular perturbations in control problems

    Avtomat. i Telemekh., 2006, no. 1,  3–51
  12. Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers

    Mat. Zametki, 79:1 (2006),  120–126
  13. Asymptotic analysis of the “authority-society” model in case of two stable authority profiles

    Matem. Mod., 16:5 (2004),  23–34
  14. On a step-like contrast structure for a problem of the calculus of variations

    Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004),  1271–1280
  15. Construction of approximate solutions to initial value problems with a parameter based on Padé approximations and asymptotic expansions

    Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  123–135
  16. The Birgchof type asymptotics of some singularly perturbed optimal control problems

    Matem. Mod., 14:3 (2002),  27–29
  17. Application of Gröbner bases for solving polynomial-nonlinear boundary problems with inexactly known boundary conditions

    Fundam. Prikl. Mat., 5:3 (1999),  675–686
  18. Contrast structures in the simplest vector variational problem and their asymptotics

    Avtomat. i Telemekh., 1998, no. 5,  41–52
  19. Asimptotics of contrast extremals in simplest vector variational problem

    Fundam. Prikl. Mat., 4:4 (1998),  1165–1178
  20. Solution of classical optimal control problems with a boundary layer

    Avtomat. i Telemekh., 1989, no. 7,  71–82
  21. Iterative methods for solving singularly perturbed boundary value problems of conditionally stable type

    Zh. Vychisl. Mat. Mat. Fiz., 27:12 (1987),  1812–1823
  22. The theory of singular perturbations and some optimal control problems

    Differ. Uravn., 21:10 (1985),  1693–1698
  23. Iterative solution of optimal control problems with fast and slow motions

    Dokl. Akad. Nauk SSSR, 272:2 (1983),  281–284
  24. Differential relations for an initial jump in a singularly perturbed problem and their applications

    Dokl. Akad. Nauk SSSR, 264:4 (1982),  804–807
  25. Singular perturbations in problems of optimal control

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 20 (1982),  3–77
  26. The asymptotic behavior of the solution of a singularly perturbed problem that is connected with the penalty function method

    Differ. Uravn., 17:9 (1981),  1574–1580
  27. Determination of the structure of a generalized solution of a nonlinear optimal control problem

    Dokl. Akad. Nauk SSSR, 250:3 (1980),  525–528
  28. Singular perturbations and generalized functions

    Dokl. Akad. Nauk SSSR, 249:5 (1979),  1036–1040
  29. Asymptotic behavior of the solution of certain discrete problems of optimal control with a small step

    Differ. Uravn., 15:9 (1979),  1681–1691
  30. The asymptotic behavior of the solution of a certain singularly perturbed Cauchy problem that arises in optimal control theory

    Differ. Uravn., 14:4 (1978),  601–612
  31. On a connection of singular perturbations with the penalty function method

    Dokl. Akad. Nauk SSSR, 231:1 (1976),  21–23
  32. The number of switchings in a certain optimal control problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 10,  13–16
  33. Singular perturbations in a linear optimal control with quadratic functional

    Dokl. Akad. Nauk SSSR, 225:5 (1975),  997–1000
  34. Singular perturbations in a linear control problem with a quadratic functional

    Differ. Uravn., 11:11 (1975),  1915–1921
  35. The regularization of a certain class of nonstable extremal problems

    Zh. Vychisl. Mat. Mat. Fiz., 12:5 (1972),  1316–1318
  36. The continuity of the solution of the Mayer problem for a singular perturbation

    Zh. Vychisl. Mat. Mat. Fiz., 12:3 (1972),  788–791

  37. In memory of Professor Vladimir Iosifovich Gurman

    Program Systems: Theory and Applications, 7:3 (2016),  109–132
  38. Second International Workshop “Singular Solutions and Disturbances in Control Systems”

    Avtomat. i Telemekh., 1996, no. 8,  186–187
  39. Поправки к статье “Сингулярные возмущения и обобщенные функции” (ДАН, т. 249, № 5, 1979 г.)

    Dokl. Akad. Nauk SSSR, 251:3 (1980),  520


© Steklov Math. Inst. of RAS, 2024