RUS  ENG
Full version
PEOPLE

Vasil'ev Fedor Pavlovich

Publications in Math-Net.Ru

  1. Regularized Extragradient Method of Finding a Solution to an Optimal Control Problem with Inaccurately Specified Input Data

    Trudy Mat. Inst. Steklova, 304 (2019),  137–148
  2. Extragradient method for correction of inconsistent linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  1992–1998
  3. Extragradient method for solving an optimal control problem with implicitly specified boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017),  49–54
  4. Extragradient method for finding a saddle point in a multicriteria problem with dynamics

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  71–78
  5. A regularized differential extraproximal method for finding an equilibrium in two-person saddle-point games

    Num. Meth. Prog., 13:1 (2012),  149–160
  6. Regularized extraproximal method for finding equilibrium points in two-person saddle-point games

    Zh. Vychisl. Mat. Mat. Fiz., 52:7 (2012),  1231–1241
  7. Regularized extragradient method for finding a saddle point in an optimal control problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  27–37
  8. Extraproximal method for solving two-person saddle-point games

    Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011),  1576–1587
  9. Regularized extragradient method for solving parametric multicriteria equilibrium programming problem

    Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010),  2083–2098
  10. Multicriteria equilibrium programming: the extragradient method

    Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010),  234–241
  11. A regularized Newton method for solving equilibrium programming problems with an inexactly specified set

    Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  21–33
  12. Methods for solving unstable equilibrium programming problems with coupled variables

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:1 (2006),  48–63
  13. Newton's method for solving equilibrium problems

    Num. Meth. Prog., 7:3 (2006),  202–210
  14. Methods for solving equilibrium programming problems

    Differ. Uravn., 41:1 (2005),  3–11
  15. Regularization methods with penalty functions for finding nash equilibria in a bilinear nonzero-sum two-person game

    Zh. Vychisl. Mat. Mat. Fiz., 45:5 (2005),  813–823
  16. A regularized extragradient method for solving equilibrium programming problems with an inexactly specified set

    Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  650–660
  17. Regularization methods for solving equilibrium programming problems with coupled constraints

    Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  27–40
  18. Approximation of an equilibrium problem with respect to the argument

    Zh. Vychisl. Mat. Mat. Fiz., 44:11 (2004),  1972–1982
  19. Conditions for the approximation of equilibrium problems from the value of a functional

    Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004),  1196–1208
  20. Regularized prediction method for solving variational inequalities with an inexactly given set

    Zh. Vychisl. Mat. Mat. Fiz., 44:5 (2004),  796–804
  21. A regularized extra-gradient method for solving the equilibrium programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 43:10 (2003),  1451–1458
  22. A Regularized Continuous Extragradient Method of the First Order with a Variable Metric for Problems of Equilibrium Programming

    Differ. Uravn., 38:12 (2002),  1587–1595
  23. A regularized extragradient method for solving variational inequalities

    Num. Meth. Prog., 3:1 (2002),  237–244
  24. A regularized first-order continuous extragradient method with variable metric for solving the problems of equilibrium programming with an inexact set

    Num. Meth. Prog., 3:1 (2002),  211–221
  25. Regularization methods, based on the extension of a set, for solving an equilibrium programming problem with inexact input data

    Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1158–1165
  26. Regularization methods with set extension for solving unstable problems of minimization

    Num. Meth. Prog., 2:1 (2001),  123–130
  27. Regularization methods for solving unstable minimization problems of the first kind with an inaccurately given set

    Zh. Vychisl. Mat. Mat. Fiz., 41:2 (2001),  217–224
  28. A residual method for equilibrium problems with an inexcactly specified set

    Zh. Vychisl. Mat. Mat. Fiz., 41:1 (2001),  3–8
  29. A stabilization method for equilibrium programming problems with an approximately given set

    Zh. Vychisl. Mat. Mat. Fiz., 39:11 (1999),  1779–1786
  30. Pointwise residual method as applied to some problems of linear algebra and linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1140–1152
  31. Justification of the dynamic programming method as applied to standardization-type problems

    Zh. Vychisl. Mat. Mat. Fiz., 38:5 (1998),  740–748
  32. Continuous linearization method with a variable metric for problems in convex programming

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1459–1466
  33. A two-step regularized linearization method for solving minimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996),  9–19
  34. A regularized continuous linearization method for minimization problems with inexact initial data

    Zh. Vychisl. Mat. Mat. Fiz., 36:3 (1996),  35–43
  35. On duality in linear problems of control and observation

    Differ. Uravn., 31:11 (1995),  1893–1900
  36. A third-order regularized continuous method of linearization

    Differ. Uravn., 31:10 (1995),  1622–1627
  37. On a continuous minimization method in spaces with a variable metric

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12,  3–9
  38. A regularized proximal method for convex minimization problems

    Trudy Mat. Inst. Steklov., 211 (1995),  131–139
  39. The existence and stability of solutions of extremal standardization problems

    Zh. Vychisl. Mat. Mat. Fiz., 35:3 (1995),  323–333
  40. A regularized third-order continuous gradient projection method

    Differ. Uravn., 30:12 (1994),  2033–2042
  41. A three-step regularized method of linearization for solving minimization problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 12,  25–32
  42. A version of the regularized gradient projection method

    Zh. Vychisl. Mat. Mat. Fiz., 34:4 (1994),  511–519
  43. A three-step regularized gradient projection method for solving minimization problems with inexact initial data

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 12,  35–43
  44. A stabilization method for solving lexicographic problems

    Zh. Vychisl. Mat. Mat. Fiz., 33:8 (1993),  1123–1134
  45. Regularized proximal method for minimization problems with inaccurate initial data

    Zh. Vychisl. Mat. Mat. Fiz., 33:2 (1993),  179–188
  46. Dynamic programming method for a standardization problem with a piecewise-linear objective function

    Zh. Vychisl. Mat. Mat. Fiz., 31:12 (1991),  1772–1782
  47. Regularization of unstable two-level problems of the standardization type

    Zh. Vychisl. Mat. Mat. Fiz., 31:3 (1991),  363–371
  48. An estimate of the rate of convergence of the discrepancy method for a linear programming problem with approximate data

    Zh. Vychisl. Mat. Mat. Fiz., 30:8 (1990),  1257–1262
  49. Estimate of the rate of convergence of the regularization method for solving the linear programming problem

    Zh. Vychisl. Mat. Mat. Fiz., 29:4 (1989),  631–635
  50. An estimate for the rate of convergence of A. N. Tikhonov's regularization method for nonstable minimization problems

    Dokl. Akad. Nauk SSSR, 299:4 (1988),  792–796
  51. Regularization of unstable problems of minimization

    Trudy Mat. Inst. Steklov., 185 (1988),  60–65
  52. Application of the penalty function method for solving multiparticle quantum mechanics problems

    Zh. Vychisl. Mat. Mat. Fiz., 28:10 (1988),  1520–1529
  53. The use of unsmooth penalty functions in the regularization of unstable minimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 27:10 (1987),  1443–1450
  54. Newton's regularization method with imprecise specification of initial data

    Trudy Mat. Inst. Steklov., 167 (1985),  53–59
  55. Regularization of certain higher-order minimization methods for inexact initial data

    Zh. Vychisl. Mat. Mat. Fiz., 25:4 (1985),  492–499
  56. Regularization of higher order methods with imprecisely given initial data

    Dokl. Akad. Nauk SSSR, 279:2 (1984),  281–285
  57. On higher-order methods for solving operator equations

    Dokl. Akad. Nauk SSSR, 270:1 (1983),  28–31
  58. An iterative regularization of Newton's method

    Zh. Vychisl. Mat. Mat. Fiz., 21:3 (1981),  775–778
  59. On iterative regularization of the conditional gradient method and Newton’s method for imprecisely assigned initial data

    Dokl. Akad. Nauk SSSR, 250:2 (1980),  265–269
  60. Regularization of ill-posed problems of minimization in approximately specified sets

    Zh. Vychisl. Mat. Mat. Fiz., 20:1 (1980),  38–50
  61. On search methods for the optimum time in dynamic pursuit-evasion games with programmed control

    Dokl. Akad. Nauk SSSR, 246:4 (1979),  788–791
  62. On the optimal control of the process of thermal blooming

    Zh. Vychisl. Mat. Mat. Fiz., 19:4 (1979),  1053–1058
  63. On the regularization of ill-posed extremal problems

    Dokl. Akad. Nauk SSSR, 241:5 (1978),  1001–1004
  64. On the tangent method

    Zh. Vychisl. Mat. Mat. Fiz., 18:4 (1978),  1060–1061
  65. Methods of solving a differential game

    Dokl. Akad. Nauk SSSR, 227:2 (1976),  269–272
  66. On approximate solution of the time-optimal problem in Banach spaces with constraints on the phase coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 11:2 (1971),  328–347
  67. Certain approximate methods of solving time-optimal problems in Banach spaces in the presence of phase constraints

    Dokl. Akad. Nauk SSSR, 195:3 (1970),  526–529
  68. The approximate solution of the time-optimal problem with lag

    Zh. Vychisl. Mat. Mat. Fiz., 10:5 (1970),  1124–1140
  69. Iterative methods of solving time-optimal problems that are connected with parabolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 10:4 (1970),  942–957
  70. Conditions for the existence of a saddle point in determinate integro-differential games with lag in the presence of parameters

    Zh. Vychisl. Mat. Mat. Fiz., 10:1 (1970),  15–25
  71. Optimality conditions for certain classes of systems which are not solved with respect to the derivative

    Dokl. Akad. Nauk SSSR, 184:6 (1969),  1267–1270
  72. The method of straight lines for the solution of a one-phase problem of the Stefan type

    Zh. Vychisl. Mat. Mat. Fiz., 8:1 (1968),  64–78
  73. A difference method of solving problems of Stefan type for a quasi-linear parabolic equation with discontinuous coefficients

    Dokl. Akad. Nauk SSSR, 157:6 (1964),  1280–1283
  74. The finite-difference method for solving a two-phase Stefan problem for a quasi-linear equation

    Dokl. Akad. Nauk SSSR, 152:5 (1963),  1034–1037
  75. The method of finite differences for solving a one-phase Stefan problem for a quasi-linear equation

    Dokl. Akad. Nauk SSSR, 152:4 (1963),  783–786
  76. A difference method for the solution of the two-phase Stefan problem

    Zh. Vychisl. Mat. Mat. Fiz., 3:5 (1963),  874–886
  77. On finite difference methods for the solution of Stefan's single-phase problem

    Zh. Vychisl. Mat. Mat. Fiz., 3:5 (1963),  861–873

  78. Nikolai Alekseevich Izobov (A tribute in honor of his 70th birthday)

    Differ. Uravn., 46:1 (2010),  3–8


© Steklov Math. Inst. of RAS, 2024